bert_800-abstracts_NER
This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2237
- Precision: 0.7742
- Recall: 0.8411
- F1: 0.8063
- Accuracy: 0.9326
- Per Tag Metrics: {'I-SMT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9947855794300099}, 'I-DSC': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9965387035871618}, 'B-SPL': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9979322125325901}, 'I-MAT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9936168299919087}, 'B-MAT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9905151487907938}, 'I-APL': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9960891845725074}, 'I-CMT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9938865414007012}, 'I-SPL': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9994156252809494}, 'O': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9571608379034433}, 'B-PRO': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9826485660343433}, 'B-CMT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9966286073900926}, 'B-SMT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9933920704845814}, 'I-PRO': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9840870268812371}, 'B-APL': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9959093769666457}, 'B-DSC': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9925379843567383}}
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | Per Tag Metrics |
---|---|---|---|---|---|---|---|---|
No log | 1.0 | 221 | 0.3104 | 0.6677 | 0.7690 | 0.7148 | 0.9032 | {'I-SMT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9922682729479457}, 'I-DSC': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9951002427402679}, 'B-SPL': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9965387035871618}, 'I-MAT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9910096197069136}, 'B-MAT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9846714016002877}, 'I-APL': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9946956756270791}, 'I-CMT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9921783691450148}, 'I-SPL': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9993706733794839}, 'O': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9413827204890767}, 'B-PRO': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.975231502292547}, 'B-CMT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9944709161197519}, 'B-SMT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9913242830171717}, 'I-PRO': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9791423177200396}, 'B-APL': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9936617818933741}, 'B-DSC': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9853906320237346}} |
No log | 2.0 | 442 | 0.2425 | 0.7502 | 0.7993 | 0.7739 | 0.9224 | {'I-SMT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9941113009080285}, 'I-DSC': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9962240402769037}, 'B-SPL': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9972129821091432}, 'I-MAT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9883125056189876}, 'B-MAT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9872336599838173}, 'I-APL': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9952800503461297}, 'I-CMT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9934819742875124}, 'I-SPL': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9993706733794839}, 'O': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9508675716982828}, 'B-PRO': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9819742875123618}, 'B-CMT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9962240402769037}, 'B-SMT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.993032455272858}, 'I-PRO': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9837723635709791}, 'B-APL': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9958194731637148}, 'B-DSC': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9919086577362223}} |
0.4237 | 3.0 | 663 | 0.2237 | 0.7666 | 0.8362 | 0.7999 | 0.9301 | {'I-SMT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9946057718241481}, 'I-DSC': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9962240402769037}, 'B-SPL': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9976625011237975}, 'I-MAT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9933021666816506}, 'B-MAT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9899307740717432}, 'I-APL': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9955497617549223}, 'I-CMT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9935718780904432}, 'I-SPL': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9993706733794839}, 'O': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9560370403668075}, 'B-PRO': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9823788546255506}, 'B-CMT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9964487997842308}, 'B-SMT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9928975995684618}, 'I-PRO': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9842218825856334}, 'B-APL': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9959543288681111}, 'B-DSC': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9920435134406186}} |
0.4237 | 4.0 | 884 | 0.2237 | 0.7742 | 0.8411 | 0.8063 | 0.9326 | {'I-SMT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9947855794300099}, 'I-DSC': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9965387035871618}, 'B-SPL': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9979322125325901}, 'I-MAT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9936168299919087}, 'B-MAT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9905151487907938}, 'I-APL': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9960891845725074}, 'I-CMT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9938865414007012}, 'I-SPL': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9994156252809494}, 'O': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9571608379034433}, 'B-PRO': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9826485660343433}, 'B-CMT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9966286073900926}, 'B-SMT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9933920704845814}, 'I-PRO': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9840870268812371}, 'B-APL': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9959093769666457}, 'B-DSC': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9925379843567383}} |
Framework versions
- Transformers 4.41.2
- Pytorch 2.2.1+cu118
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 0
Model tree for Flamenco43/bert_800-abstracts_NER
Base model
google-bert/bert-base-uncased