bert-800abstracts / README.md
Flamenco43's picture
bert-800abstracts
9ce6703 verified
---
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-800abstracts
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/nananansnsns/LLLM/runs/oehxz9h3)
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/nananansnsns/LLLM/runs/oehxz9h3)
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/nananansnsns/LLLM/runs/oehxz9h3)
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/nananansnsns/LLLM/runs/oehxz9h3)
# bert-800abstracts
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co./bert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2845
- Precision: 0.6957
- Recall: 0.7694
- F1: 0.7307
- Accuracy: 0.9111
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 62 | 0.5356 | 0.4941 | 0.5665 | 0.5279 | 0.8374 |
| No log | 2.0 | 124 | 0.3440 | 0.6492 | 0.7011 | 0.6741 | 0.8950 |
| No log | 3.0 | 186 | 0.3010 | 0.6713 | 0.7640 | 0.7146 | 0.9064 |
| No log | 4.0 | 248 | 0.2845 | 0.6957 | 0.7694 | 0.7307 | 0.9111 |
### Framework versions
- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1