Edit model card

Visualize in Weights & Biases

NanoBertV1Step800k-CNER

This model is a fine-tuned version of Flamenco43/NanoBERT_V4 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0188
  • Precision: 0.9049
  • Recall: 0.9199
  • F1: 0.9123
  • Accuracy: 0.9942

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0264 1.0 2000 0.0257 0.8680 0.8749 0.8714 0.9917
0.0157 2.0 4000 0.0204 0.8834 0.9163 0.8995 0.9934
0.0092 3.0 6000 0.0188 0.9049 0.9199 0.9123 0.9942
0.0047 4.0 8000 0.0219 0.9041 0.9269 0.9153 0.9944

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
2
Safetensors
Model size
109M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for Flamenco43/NanoBertV1Step800k-CNER

Finetuned
(1)
this model