NanoBertV1Step800k-CNER
This model is a fine-tuned version of Flamenco43/NanoBERT_V4 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0188
- Precision: 0.9049
- Recall: 0.9199
- F1: 0.9123
- Accuracy: 0.9942
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.0264 | 1.0 | 2000 | 0.0257 | 0.8680 | 0.8749 | 0.8714 | 0.9917 |
0.0157 | 2.0 | 4000 | 0.0204 | 0.8834 | 0.9163 | 0.8995 | 0.9934 |
0.0092 | 3.0 | 6000 | 0.0188 | 0.9049 | 0.9199 | 0.9123 | 0.9942 |
0.0047 | 4.0 | 8000 | 0.0219 | 0.9041 | 0.9269 | 0.9153 | 0.9944 |
Framework versions
- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 2
Model tree for Flamenco43/NanoBertV1Step800k-CNER
Base model
Flamenco43/NanoBERT_V4