Built with Axolotl

See axolotl config

axolotl version: 0.4.1

base_model: Aculi/Tinyllama-2B
model_type: LlamaForCausalLM
tokenizer_type: LlamaTokenizer

load_in_8bit: false
load_in_4bit: true
strict: false

datasets:
  - path: ./datas/1.json
    type: alpaca
  - path: ./datas/2.json
    type: alpaca
    
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./outputs/thinking-tiny-llama

adapter: qlora
lora_model_dir:

sequence_len: 4096
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true

lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_modules:
lora_target_linear: true
lora_fan_in_fan_out:

wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 4
optimizer: paged_adamw_32bit
lr_scheduler: cosine
learning_rate: 0.0002

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention: false
flash_attention: true

warmup_steps: 10
evals_per_epoch: 2
saves_per_epoch: 2
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:

outputs/thinking-tiny-llama

This model is a fine-tuned version of Aculi/Tinyllama-2B on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0222

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss
1.5625 0.0013 1 1.5692
1.1161 0.5002 400 1.0995
1.0509 1.0003 800 1.0633
1.0665 1.4867 1200 1.0422
1.012 1.9869 1600 1.0287
1.0124 2.4733 2000 1.0250
0.8544 2.9734 2400 1.0212
0.9435 3.4605 2800 1.0222

Framework versions

  • PEFT 0.11.1
  • Transformers 4.43.1
  • Pytorch 2.3.1+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for Fischerboot/qlora-2b-thinking-full

Finetuned
Aculi/Tinyllama-2B
Adapter
(8)
this model
Merges
1 model