OpenLLaMa 3B PersonaChat

This is a LoRA finetune of OpenLLaMa 3B on the personachat-truecased dataset with 3 epochs of 500 steps.

Use

Before using this model, you must first add these extra tokens:

tokenizer.add_special_tokens({"additional_special_tokens": ["<|human|>", "<|bot|>", "<|endoftext|>"]})
model.resize_token_embeddings(len(tokenizer))

The model is finetuned with the format is as follows:

Personality:
 - [...]
 - [...]
<|human|>Hi there!<|endoftext|><|bot|>Hello!<|endoftext|>

To use this model, you must first define the personalities.

personalities = """Personality:
 - [...]
 - [...]
"""

Then, follow the format:

user = input(">>> ")
prompt = f"{personalities}<|human|>{user}<|endoftext|><|bot|>"

Naming Format

[model name]-finetuned-[dataset]-e[number of epochs]-s[number of steps]

Training procedure

The following bitsandbytes quantization config was used during training:

  • load_in_8bit: True
  • load_in_4bit: False
  • llm_int8_threshold: 6.0
  • llm_int8_skip_modules: None
  • llm_int8_enable_fp32_cpu_offload: False
  • llm_int8_has_fp16_weight: False
  • bnb_4bit_quant_type: fp4
  • bnb_4bit_use_double_quant: False
  • bnb_4bit_compute_dtype: float32

Framework versions

  • PEFT 0.4.0.dev0
Downloads last month
2
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for FirstLast/open-llama-3b-finetuned-persona-e3-s500

Adapter
(133)
this model