A Llama Chat Model of 160M Parameters

Recommended Prompt Format

<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{user_message}<|im_end|>
<|im_start|>assistant

Recommended Inference Parameters

penalty_alpha: 0.5
top_k: 4
repetition_penalty: 1.01

Usage Example

from transformers import pipeline

generate = pipeline("text-generation", "Felladrin/Llama-160M-Chat-v1")

messages = [
    {
        "role": "system",
        "content": "You are a helpful assistant who answers user's questions with details and curiosity.",
    },
    {
        "role": "user",
        "content": "What are some potential applications for quantum computing?",
    },
]

prompt = generate.tokenizer.apply_chat_template(
    messages, tokenize=False, add_generation_prompt=True
)

output = generate(
    prompt,
    max_new_tokens=1024,
    penalty_alpha=0.5,
    top_k=4,
    repetition_penalty=1.01,
)

print(output[0]["generated_text"])

Old Open LLM Leaderboard Evaluation Results

Metric Value
Avg. 30.27
AI2 Reasoning Challenge (25-Shot) 24.74
HellaSwag (10-Shot) 35.29
MMLU (5-Shot) 26.13
TruthfulQA (0-shot) 44.16
Winogrande (5-shot) 51.30
GSM8k (5-shot) 0.00

New Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 4.10
IFEval (0-Shot) 15.75
BBH (3-Shot) 3.17
MATH Lvl 5 (4-Shot) 0.00
GPQA (0-shot) 1.01
MuSR (0-shot) 3.17
MMLU-PRO (5-shot) 1.51
Downloads last month
1,221
Safetensors
Model size
162M params
Tensor type
F32
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Felladrin/Llama-160M-Chat-v1

Finetuned
(7)
this model
Quantizations
5 models

Datasets used to train Felladrin/Llama-160M-Chat-v1

Spaces using Felladrin/Llama-160M-Chat-v1 3

Collection including Felladrin/Llama-160M-Chat-v1

Evaluation results