|
--- |
|
license: apache-2.0 |
|
--- |
|
|
|
CLIP model post-trained on 80M human face images. |
|
|
|
|
|
``` |
|
from PIL import Image |
|
import requests |
|
|
|
from transformers import CLIPProcessor, CLIPModel |
|
|
|
model = CLIPModel.from_pretrained("P01son/FaceCLIP-base-32") |
|
processor = CLIPProcessor.from_pretrained("P01son/FaceCLIP-base-32") |
|
|
|
url = "http://images.cocodataset.org/val2017/000000039769.jpg" |
|
image = Image.open(requests.get(url, stream=True).raw) |
|
|
|
inputs = processor(text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True) |
|
|
|
outputs = model(**inputs) |
|
logits_per_image = outputs.logits_per_image # this is the image-text similarity score |
|
probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities |
|
|
|
``` |