|
--- |
|
pipeline_tag: token-classification |
|
tags: |
|
- named-entity-recognition |
|
- sequence-tagger-model |
|
widget: |
|
- text: Mit navn er Amadeus Wolfgang, og jeg bor i Berlin |
|
inference: |
|
parameters: |
|
aggregation_strategy: simple |
|
grouped_entities: true |
|
language: |
|
- da |
|
--- |
|
|
|
xlm-roberta model trained on daner, performing 95 f1-Macro on test set. |
|
|
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForTokenClassification |
|
from transformers import pipeline |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("EvanD/xlm-roberta-base-danish-ner-daner") |
|
ner_model = AutoModelForTokenClassification.from_pretrained("EvanD/xlm-roberta-base-danish-ner-daner") |
|
|
|
nlp = pipeline("ner", model=ner_model, tokenizer=tokenizer, aggregation_strategy="simple") |
|
example = "Mit navn er Amadeus Wolfgang, og jeg bor i Berlin" |
|
|
|
ner_results = nlp(example) |
|
print(ner_results) |
|
``` |