Contrary to my other models, this one is purely a repackaging of flair/ner-dutch-large but transformed back to pure huggingface pytorch for performance purposes.

from transformers import AutoTokenizer, AutoModelForTokenClassification
from transformers import pipeline

tokenizer = AutoTokenizer.from_pretrained("EvanD/dutch-ner-xlm-conll2003")
ner_model = AutoModelForTokenClassification.from_pretrained("EvanD/dutch-ner-xlm-conll2003")

nlp = pipeline("ner", model=ner_model, tokenizer=tokenizer, aggregation_strategy="simple")
example = "George Washington ging naar Washington"

ner_results = nlp(example)
print(ner_results)

# {
#     "start_pos": 0,
#     "end_pos": 17,
#     "text": "George Washington",
#     "score": 0.9999986886978149,
#     "label": "PER"
# }
# {
#     "start_pos": 28,
#     "end_pos": 38,
#     "text": "Washington",
#     "score": 0.9999939203262329,
#     "label": "LOC"
# }
Downloads last month
529
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.