EvaByte-SFT / tokenization_evabyte.py
linzheng's picture
Upload tokenizer
a3db85f verified
raw
history blame
9.93 kB
# coding=utf-8
""" Tokenization class for model EvaByte."""
from typing import List, Optional, Tuple
from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
from transformers.utils import logging
logger = logging.get_logger(__name__)
chat_template = """
{{- bos_token }}
{%- if messages[0]['role'] == 'system' %}
{%- set system_message = messages[0]['content'] %}
{%- set messages = messages[1:] %}
{%- else %}
{%- set system_message = "" %}
{%- endif %}
{{- '<|start_header_id|>system<|end_header_id|>\n\n' + system_message + '<|eot_id|>'}}
{%- for message in messages %}
{%- if (message['role'] != 'user') and (message['role'] != 'assistant') %}
{{- raise_exception('Conversation roles must be user or assistant') }}
{%- endif %}
{{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] + '<|eot_id|>' }}
{%- endfor %}
{%- if add_generation_prompt %}
{{- '<|start_header_id|>' + 'assistant' + '<|end_header_id|>\n\n' }}
{%- endif %}
"""
class EvaByteTokenizer(PreTrainedTokenizer):
def __init__(
self,
bos_token="<bos>",
eos_token="<eos>",
unk_token="<unk>",
sep_token="<sep>",
pad_token="<pad>",
extra_ids=59,
additional_special_tokens=None,
clean_up_tokenization_spaces=False,
**kwargs,
) -> None:
num_base_special_tokens = 5
# Add extra_ids to the special token list
if extra_ids > 0 and additional_special_tokens is None:
additional_special_tokens = [f"<extra_id_{i}>" for i in range(num_base_special_tokens, extra_ids + num_base_special_tokens)]
elif extra_ids > 0 and additional_special_tokens is not None and len(additional_special_tokens) > 0:
# Check that we have the right number of extra_id special tokens
extra_tokens = len(set(filter(lambda x: bool("extra_id" in str(x)), additional_special_tokens)))
if extra_tokens != extra_ids:
raise ValueError(
f"Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are"
" provided to EvaByteTokenizer. In this case the additional_special_tokens must include the"
" extra_ids tokens"
)
#### override some reserved tokens to support chat template
for i, token in enumerate(additional_special_tokens):
if token == "<extra_id_5>":
token = "<repo_name>"
elif token == "<extra_id_6>":
token = "<file_sep>"
elif token == "<extra_id_7>":
token = "<t2v_token>"
elif token == "<extra_id_8>":
token = "<v2t_token>"
elif token == "<extra_id_9>":
token = "<|start_header_id|>"
elif token == "<extra_id_10>":
token = "<|end_header_id|>"
elif token == "<extra_id_11>":
token = "<|eot_id|>"
additional_special_tokens[i] = token
# lstrip and rstrip are set to False because we don't want to strip the whitespace from the special tokens
# this would be important for the byte tokenizer
pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token
eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token
sep_token = AddedToken(sep_token, lstrip=False, rstrip=False) if isinstance(sep_token, str) else sep_token
self._added_tokens_decoder = {
0: pad_token,
1: bos_token,
2: eos_token,
3: unk_token, # unk_token is a placeholder
4: sep_token,
**{i: AddedToken(t, lstrip=False, rstrip=False) for i, t in enumerate(additional_special_tokens, start=num_base_special_tokens)},
}
self.offset = len(self._added_tokens_decoder)
self._utf_vocab_size = 2**8 # utf is 8 bits
self.add_bos_token = True
self.add_eos_token = False
super().__init__(
pad_token=pad_token,
bos_token=bos_token,
eos_token=eos_token,
unk_token=unk_token,
sep_token=sep_token,
extra_ids=0,
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
additional_special_tokens=additional_special_tokens,
**kwargs,
)
self.chat_template = chat_template
@property
def vocab_size(self):
return self._utf_vocab_size
def get_vocab(self):
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size + self.offset)}
vocab.update(self.added_tokens_encoder)
return vocab
# Copied from transformers.models.llama.tokenization_llama.LlamaTokenizer.build_inputs_with_special_tokens
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
output = bos_token_id + token_ids_0 + eos_token_id
if token_ids_1 is not None:
output = output + bos_token_id + token_ids_1 + eos_token_id
return output
# Copied from transformers.models.llama.tokenization_llama.LlamaTokenizer.get_special_tokens_mask
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
bos_token_id = [1] if self.add_bos_token else []
eos_token_id = [1] if self.add_eos_token else []
if token_ids_1 is None:
return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id
return (
bos_token_id
+ ([0] * len(token_ids_0))
+ eos_token_id
+ bos_token_id
+ ([0] * len(token_ids_1))
+ eos_token_id
)
# Copied from transformers.models.llama.tokenization_llama.LlamaTokenizer.create_token_type_ids_from_sequences
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
sequence pair mask has the following format:
```
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
```
if token_ids_1 is None, only returns the first portion of the mask (0s).
Args:
token_ids_0 (`List[int]`):
List of ids.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
"""
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
output = [0] * len(bos_token_id + token_ids_0 + eos_token_id)
if token_ids_1 is not None:
output += [1] * len(bos_token_id + token_ids_1 + eos_token_id)
return output
def _tokenize(self, text: str) -> List[str]:
"""Take as input a string and return a list of strings (tokens) for words/sub-words"""
tokens = [chr(i) for i in text.encode("utf-8")]
return tokens
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
if len(token) != 1:
token_id = None
else:
token_id = ord(token) + self.offset
return token_id
def _convert_id_to_token(self, index):
"""Converts an index (integer) to a byte (str) using the vocab."""
token = chr(index - self.offset)
return token
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of bytes (string) to a single string."""
bstring = b""
for token in tokens:
if token in self.added_tokens_decoder:
tok_string = self.added_tokens_decoder[token].encode("utf-8")
elif token in self.added_tokens_encoder:
tok_string = token.encode("utf-8")
else:
tok_string = bytes([ord(token)])
bstring += tok_string
string = bstring.decode("utf-8", errors="ignore")
return string
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
return ()