File size: 9,927 Bytes
a3db85f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
# coding=utf-8
""" Tokenization class for model EvaByte."""
from typing import List, Optional, Tuple
from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
from transformers.utils import logging
logger = logging.get_logger(__name__)
chat_template = """
{{- bos_token }}
{%- if messages[0]['role'] == 'system' %}
{%- set system_message = messages[0]['content'] %}
{%- set messages = messages[1:] %}
{%- else %}
{%- set system_message = "" %}
{%- endif %}
{{- '<|start_header_id|>system<|end_header_id|>\n\n' + system_message + '<|eot_id|>'}}
{%- for message in messages %}
{%- if (message['role'] != 'user') and (message['role'] != 'assistant') %}
{{- raise_exception('Conversation roles must be user or assistant') }}
{%- endif %}
{{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] + '<|eot_id|>' }}
{%- endfor %}
{%- if add_generation_prompt %}
{{- '<|start_header_id|>' + 'assistant' + '<|end_header_id|>\n\n' }}
{%- endif %}
"""
class EvaByteTokenizer(PreTrainedTokenizer):
def __init__(
self,
bos_token="<bos>",
eos_token="<eos>",
unk_token="<unk>",
sep_token="<sep>",
pad_token="<pad>",
extra_ids=59,
additional_special_tokens=None,
clean_up_tokenization_spaces=False,
**kwargs,
) -> None:
num_base_special_tokens = 5
# Add extra_ids to the special token list
if extra_ids > 0 and additional_special_tokens is None:
additional_special_tokens = [f"<extra_id_{i}>" for i in range(num_base_special_tokens, extra_ids + num_base_special_tokens)]
elif extra_ids > 0 and additional_special_tokens is not None and len(additional_special_tokens) > 0:
# Check that we have the right number of extra_id special tokens
extra_tokens = len(set(filter(lambda x: bool("extra_id" in str(x)), additional_special_tokens)))
if extra_tokens != extra_ids:
raise ValueError(
f"Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are"
" provided to EvaByteTokenizer. In this case the additional_special_tokens must include the"
" extra_ids tokens"
)
#### override some reserved tokens to support chat template
for i, token in enumerate(additional_special_tokens):
if token == "<extra_id_5>":
token = "<repo_name>"
elif token == "<extra_id_6>":
token = "<file_sep>"
elif token == "<extra_id_7>":
token = "<t2v_token>"
elif token == "<extra_id_8>":
token = "<v2t_token>"
elif token == "<extra_id_9>":
token = "<|start_header_id|>"
elif token == "<extra_id_10>":
token = "<|end_header_id|>"
elif token == "<extra_id_11>":
token = "<|eot_id|>"
additional_special_tokens[i] = token
# lstrip and rstrip are set to False because we don't want to strip the whitespace from the special tokens
# this would be important for the byte tokenizer
pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token
eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token
sep_token = AddedToken(sep_token, lstrip=False, rstrip=False) if isinstance(sep_token, str) else sep_token
self._added_tokens_decoder = {
0: pad_token,
1: bos_token,
2: eos_token,
3: unk_token, # unk_token is a placeholder
4: sep_token,
**{i: AddedToken(t, lstrip=False, rstrip=False) for i, t in enumerate(additional_special_tokens, start=num_base_special_tokens)},
}
self.offset = len(self._added_tokens_decoder)
self._utf_vocab_size = 2**8 # utf is 8 bits
self.add_bos_token = True
self.add_eos_token = False
super().__init__(
pad_token=pad_token,
bos_token=bos_token,
eos_token=eos_token,
unk_token=unk_token,
sep_token=sep_token,
extra_ids=0,
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
additional_special_tokens=additional_special_tokens,
**kwargs,
)
self.chat_template = chat_template
@property
def vocab_size(self):
return self._utf_vocab_size
def get_vocab(self):
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size + self.offset)}
vocab.update(self.added_tokens_encoder)
return vocab
# Copied from transformers.models.llama.tokenization_llama.LlamaTokenizer.build_inputs_with_special_tokens
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
output = bos_token_id + token_ids_0 + eos_token_id
if token_ids_1 is not None:
output = output + bos_token_id + token_ids_1 + eos_token_id
return output
# Copied from transformers.models.llama.tokenization_llama.LlamaTokenizer.get_special_tokens_mask
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
bos_token_id = [1] if self.add_bos_token else []
eos_token_id = [1] if self.add_eos_token else []
if token_ids_1 is None:
return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id
return (
bos_token_id
+ ([0] * len(token_ids_0))
+ eos_token_id
+ bos_token_id
+ ([0] * len(token_ids_1))
+ eos_token_id
)
# Copied from transformers.models.llama.tokenization_llama.LlamaTokenizer.create_token_type_ids_from_sequences
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
sequence pair mask has the following format:
```
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
```
if token_ids_1 is None, only returns the first portion of the mask (0s).
Args:
token_ids_0 (`List[int]`):
List of ids.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
"""
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
output = [0] * len(bos_token_id + token_ids_0 + eos_token_id)
if token_ids_1 is not None:
output += [1] * len(bos_token_id + token_ids_1 + eos_token_id)
return output
def _tokenize(self, text: str) -> List[str]:
"""Take as input a string and return a list of strings (tokens) for words/sub-words"""
tokens = [chr(i) for i in text.encode("utf-8")]
return tokens
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
if len(token) != 1:
token_id = None
else:
token_id = ord(token) + self.offset
return token_id
def _convert_id_to_token(self, index):
"""Converts an index (integer) to a byte (str) using the vocab."""
token = chr(index - self.offset)
return token
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of bytes (string) to a single string."""
bstring = b""
for token in tokens:
if token in self.added_tokens_decoder:
tok_string = self.added_tokens_decoder[token].encode("utf-8")
elif token in self.added_tokens_encoder:
tok_string = token.encode("utf-8")
else:
tok_string = bytes([ord(token)])
bstring += tok_string
string = bstring.decode("utf-8", errors="ignore")
return string
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
return ()
|