File size: 9,927 Bytes
a3db85f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
# coding=utf-8

""" Tokenization class for model EvaByte."""


from typing import List, Optional, Tuple

from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
from transformers.utils import logging


logger = logging.get_logger(__name__)


chat_template = """
{{- bos_token }}
{%- if messages[0]['role'] == 'system' %}
    {%- set system_message = messages[0]['content'] %}
    {%- set messages = messages[1:] %}
{%- else %}
    {%- set system_message = "" %}
{%- endif %}

{{- '<|start_header_id|>system<|end_header_id|>\n\n' + system_message + '<|eot_id|>'}}

{%- for message in messages %}
    {%- if (message['role'] != 'user') and (message['role'] != 'assistant') %}
        {{- raise_exception('Conversation roles must be user or assistant') }}
    {%- endif %}

    {{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] + '<|eot_id|>' }}
{%- endfor %}

{%- if add_generation_prompt %}
    {{- '<|start_header_id|>' + 'assistant' + '<|end_header_id|>\n\n' }}
{%- endif %}
"""

class EvaByteTokenizer(PreTrainedTokenizer):
    def __init__(
        self,
        bos_token="<bos>",
        eos_token="<eos>",
        unk_token="<unk>",
        sep_token="<sep>",
        pad_token="<pad>",
        extra_ids=59,
        additional_special_tokens=None,
        clean_up_tokenization_spaces=False,
        **kwargs,
    ) -> None:
        num_base_special_tokens = 5
        # Add extra_ids to the special token list
        if extra_ids > 0 and additional_special_tokens is None:
            additional_special_tokens = [f"<extra_id_{i}>" for i in range(num_base_special_tokens, extra_ids + num_base_special_tokens)]
        elif extra_ids > 0 and additional_special_tokens is not None and len(additional_special_tokens) > 0:
            # Check that we have the right number of extra_id special tokens
            extra_tokens = len(set(filter(lambda x: bool("extra_id" in str(x)), additional_special_tokens)))
            if extra_tokens != extra_ids:
                raise ValueError(
                    f"Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are"
                    " provided to EvaByteTokenizer. In this case the additional_special_tokens must include the"
                    " extra_ids tokens"
                )

        #### override some reserved tokens to support chat template
        for i, token in enumerate(additional_special_tokens):
            if token == "<extra_id_5>":
                token = "<repo_name>"
            elif token == "<extra_id_6>":
                token = "<file_sep>"
            elif token == "<extra_id_7>":
                token = "<t2v_token>"
            elif token == "<extra_id_8>":
                token = "<v2t_token>"
            elif token == "<extra_id_9>":
                token = "<|start_header_id|>"
            elif token == "<extra_id_10>":
                token = "<|end_header_id|>"
            elif token == "<extra_id_11>":
                token = "<|eot_id|>"
            additional_special_tokens[i] = token

        # lstrip and rstrip are set to False because we don't want to strip the whitespace from the special tokens
        # this would be important for the byte tokenizer
        pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
        bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token
        eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
        unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token
        sep_token = AddedToken(sep_token, lstrip=False, rstrip=False) if isinstance(sep_token, str) else sep_token

        self._added_tokens_decoder = {
            0: pad_token,
            1: bos_token, 
            2: eos_token,
            3: unk_token, # unk_token is a placeholder
            4: sep_token,
            **{i: AddedToken(t, lstrip=False, rstrip=False) for i, t in enumerate(additional_special_tokens, start=num_base_special_tokens)},
        }
        self.offset = len(self._added_tokens_decoder)
        self._utf_vocab_size = 2**8  # utf is 8 bits
        self.add_bos_token = True
        self.add_eos_token = False
        super().__init__(
            pad_token=pad_token,
            bos_token=bos_token,
            eos_token=eos_token,
            unk_token=unk_token,
            sep_token=sep_token,
            extra_ids=0,
            clean_up_tokenization_spaces=clean_up_tokenization_spaces,
            additional_special_tokens=additional_special_tokens,
            **kwargs,
        )
        self.chat_template = chat_template


    @property
    def vocab_size(self):
        return self._utf_vocab_size

    def get_vocab(self):
        vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size + self.offset)}
        vocab.update(self.added_tokens_encoder)
        return vocab

    # Copied from transformers.models.llama.tokenization_llama.LlamaTokenizer.build_inputs_with_special_tokens
    def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
        bos_token_id = [self.bos_token_id] if self.add_bos_token else []
        eos_token_id = [self.eos_token_id] if self.add_eos_token else []

        output = bos_token_id + token_ids_0 + eos_token_id

        if token_ids_1 is not None:
            output = output + bos_token_id + token_ids_1 + eos_token_id

        return output

    # Copied from transformers.models.llama.tokenization_llama.LlamaTokenizer.get_special_tokens_mask
    def get_special_tokens_mask(
        self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
    ) -> List[int]:
        """
        Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
        special tokens using the tokenizer `prepare_for_model` method.

        Args:
            token_ids_0 (`List[int]`):
                List of IDs.
            token_ids_1 (`List[int]`, *optional*):
                Optional second list of IDs for sequence pairs.
            already_has_special_tokens (`bool`, *optional*, defaults to `False`):
                Whether or not the token list is already formatted with special tokens for the model.

        Returns:
            `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
        """
        if already_has_special_tokens:
            return super().get_special_tokens_mask(
                token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
            )

        bos_token_id = [1] if self.add_bos_token else []
        eos_token_id = [1] if self.add_eos_token else []

        if token_ids_1 is None:
            return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id
        return (
            bos_token_id
            + ([0] * len(token_ids_0))
            + eos_token_id
            + bos_token_id
            + ([0] * len(token_ids_1))
            + eos_token_id
        )

    # Copied from transformers.models.llama.tokenization_llama.LlamaTokenizer.create_token_type_ids_from_sequences
    def create_token_type_ids_from_sequences(
        self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
    ) -> List[int]:
        """
        Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
        sequence pair mask has the following format:

        ```
        0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
        | first sequence    | second sequence |
        ```

        if token_ids_1 is None, only returns the first portion of the mask (0s).

        Args:
            token_ids_0 (`List[int]`):
                List of ids.
            token_ids_1 (`List[int]`, *optional*):
                Optional second list of IDs for sequence pairs.

        Returns:
            `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
        """
        bos_token_id = [self.bos_token_id] if self.add_bos_token else []
        eos_token_id = [self.eos_token_id] if self.add_eos_token else []

        output = [0] * len(bos_token_id + token_ids_0 + eos_token_id)

        if token_ids_1 is not None:
            output += [1] * len(bos_token_id + token_ids_1 + eos_token_id)

        return output

    def _tokenize(self, text: str) -> List[str]:
        """Take as input a string and return a list of strings (tokens) for words/sub-words"""
        tokens = [chr(i) for i in text.encode("utf-8")]
        return tokens

    def _convert_token_to_id(self, token):
        """Converts a token (str) in an id using the vocab."""

        if len(token) != 1:
            token_id = None
        else:
            token_id = ord(token) + self.offset

        return token_id

    def _convert_id_to_token(self, index):
        """Converts an index (integer) to a byte (str) using the vocab."""
        token = chr(index - self.offset)
        return token

    def convert_tokens_to_string(self, tokens):
        """Converts a sequence of bytes (string) to a single string."""
        bstring = b""
        for token in tokens:
            if token in self.added_tokens_decoder:
                tok_string = self.added_tokens_decoder[token].encode("utf-8")
            elif token in self.added_tokens_encoder:
                tok_string = token.encode("utf-8")
            else:
                tok_string = bytes([ord(token)])
            bstring += tok_string
        string = bstring.decode("utf-8", errors="ignore")
        return string

    def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
        return ()