File size: 36,968 Bytes
474addc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 |
# The implementation of multibyte deocidng is largely adapted from
# Medusa decoding: https://github.com/FasterDecoding/Medusa
import torch
import torch.nn.functional as F
from transformers.generation.stopping_criteria import (
MaxLengthCriteria,
StoppingCriteriaList,
)
from typing import Union, List
from .eva_cache import EvaStaticCacheForTriton
from .eva_prep_kv_kernel import triton_eva_prep_kv_fwd
class MultibyteEosTokenCriteria:
"""
This class implements a simple stopping criteria to stop generation whenever
the "end-of-sequence" token is generated in the last `new_tokens` tokens.
Adapted from
https://github.com/huggingface/transformers/blob/main/src/transformers/generation/stopping_criteria.py#L446
By default, it uses the `model.generation_config.eos_token_id`.
Args:
eos_token_id (`Union[int, List[int]]`):
The id(s) of the *end-of-sequence* token.
"""
def __init__(self, eos_token_ids: Union[int, List[int]]):
if isinstance(eos_token_ids, int):
eos_token_ids = [eos_token_ids]
self.eos_token_ids = eos_token_ids
def __call__(self, input_ids: torch.LongTensor, new_tokens: int) -> bool:
current_input_len = input_ids.shape[-1]
new_token_ids = input_ids[:, current_input_len - new_tokens:]
for eos_token_id in self.eos_token_ids:
if torch.any(new_token_ids == eos_token_id):
return True
return False
def build_tree(spec):
nodes_at_depth = []
nodes_at_depth.append([()]) # Root at depth 1
for d in range(1, len(spec) + 1):
prev_nodes = nodes_at_depth[d - 1]
spec_list = spec[d - 1]
current_nodes = []
for node_idx, node in enumerate(prev_nodes):
if node_idx < len(spec_list):
num_children = spec_list[node_idx]
else:
num_children = 0
for child_idx in range(num_children):
new_node = node + (child_idx,)
current_nodes.append(new_node)
nodes_at_depth.append(current_nodes)
# Flatten the list of nodes, excluding the root node if desired
all_nodes = [node for depth_nodes in nodes_at_depth for node in depth_nodes if node]
return all_nodes
evabyte_7b_95 = build_tree(
[
[10],
[10, 8, 2, 2, 1, 1],
[10, 4, 2, 1, 0, 0, 0, 0, 0, 0, 2, 1, 1, 0, 0, 0, 0, 0, 1],
[8, 2, 2, 1, 0, 0, 0, 0, 0, 0, 1],
[6, 2, 1, 1],
[4, 2, 1, 1],
[4, 2, 1],
]
)
evabyte_7b_31 = build_tree(
[
[4],
[3, 2, 1, 1],
[3, 2, 1, 1],
[2, 1, 1],
[2, 1],
[2, 1],
[2, 1],
]
)
TOPK = 10 # topk for sparse tree (10 is a placeholder and it is sufficient)
def pad_path(path, length, pad_value=-2):
"""
Pad the given path list with a specific value up to a specified length.
Parameters:
- path (list): The original list that needs padding.
- length (int): The desired length of the padded list.
- pad_value (optional, default=-2): The value to use for padding.
Returns:
- list: A new list based on the original path but padded to the desired length.
Example:
>>> pad_path([1,2,3], 5)
[1, 2, 3, -2, -2]
Note:
If the given path is already longer than the specified length,
then no padding occurs, and the original path is returned.
"""
return path + [pad_value] * (length - len(path))
def reset_past_key_values(passed_key_values):
"""
Resets the current lengths in the passed key-values to zero.
This function is designed to be used during the evaluation of a baseline model.
It iterates through each layer's key-values and sets their current lengths to zero,
effectively resetting their state.
Args:
- passed_key_values (list of torch.Tensor): Contains past hidden states and past attention values for each layer.
Returns:
- passed_key_values (list of torch.Tensor): Updated past hidden states and past attention values with reset lengths.
"""
for i in range(len(passed_key_values)):
for j in range(2):
passed_key_values[i][j].current_length.fill_(0)
return passed_key_values
def get_nucleus_one_token(logit, temperature, top_p):
"""
Performs token sampling based on the nucleus (top-p) sampling method.
This function selects a token from a given logit distribution using the nucleus sampling strategy.
It allows for more controlled and diverse generation compared to traditional top-k sampling.
Args:
logit (torch.Tensor): The logits from a language model output, expected to be a 2D tensor (BxC).
temperature (float): A temperature parameter to control the randomness in sampling.
Higher values increase diversity, lower values make selections more deterministic.
top_p (float): The cumulative probability threshold for nucleus sampling.
It controls the size of the set of high-probability tokens to consider for sampling.
Returns:
torch.Tensor: A tensor containing the indices of the sampled tokens.
"""
if top_p >= 1:
return torch.multinomial(F.softmax(logit / temperature, dim=-1), 1)
logit = logit / temperature
probs = torch.softmax(logit, dim=-1)
sorted_logits, sorted_indices = torch.sort(probs, descending=True)
cum_probs = torch.cumsum(sorted_logits, dim=-1)
sorted_indices_to_remove = cum_probs > top_p
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
sorted_indices_to_remove[..., 0] = 0
indices_to_remove = sorted_indices_to_remove.scatter(dim=1, index=sorted_indices, src=sorted_indices_to_remove)
logit[indices_to_remove] = float('-inf')
sampled_tokens = torch.multinomial(F.softmax(logit, dim=-1), 1)
return sampled_tokens
def get_typical_one_token(logit, temperature, posterior_threshold, posterior_alpha):
"""
Implements token sampling based on the typical sampling method.
This function selects a token from a given logit distribution using the typical sampling strategy,
aiming to balance between diversity and likelihood in a more nuanced way compared to traditional methods.
Args:
logit (torch.Tensor): The logits from a language model output, expected to be a 2D tensor.
temperature (float): A parameter to control the randomness in sampling.
Higher values increase diversity, lower values make selections more deterministic.
posterior_threshold (float): A threshold to decide the lower bound of probabilities to be considered for sampling.
posterior_alpha (float): A scaling factor applied to the entropy-based adaptive threshold.
Returns:
torch.Tensor: A tensor containing the indices of the sampled tokens.
"""
logit = logit / temperature
probs = torch.softmax(logit, dim=-1)
entropy = -torch.sum(
probs * torch.log(probs + 1e-5), dim=-1
)
threshold = torch.minimum(
torch.ones_like(entropy) * posterior_threshold,
torch.exp(-entropy) * posterior_alpha,
)
indices_to_remove = probs < threshold.unsqueeze(-1)
logit[indices_to_remove] = float('-inf')
sampled_tokens = torch.multinomial(F.softmax(logit, dim=-1), 1)
return sampled_tokens
def generate_medusa_buffers(medusa_choices, device="cuda"):
"""
Generate buffers for the Medusa structure based on the provided choices.
Parameters:
- medusa_choices (list): A nested list representing tree in the Medusa structure.
- device (str): Device to which the tensors should be moved. Default is "cuda".
Returns:
- dict: A dictionary containing buffers related to the Medusa structure.
"""
# Sort the medusa_choices based on their lengths and then their values
sorted_medusa_choices = sorted(medusa_choices, key=lambda x: (len(x), x))
medusa_len = len(sorted_medusa_choices) + 1
# Initialize depth_counts to keep track of how many choices have a particular depth
depth_counts = [0] * max([len(path) for path in sorted_medusa_choices])
for path in sorted_medusa_choices:
depth_counts[len(path) - 1] += 1
# Create the attention mask for Medusa
medusa_attn_mask = torch.eye(medusa_len, medusa_len)
medusa_attn_mask[:, 0] = 1
start = 0
for i in range(len(depth_counts)):
for j in range(depth_counts[i]):
cur_medusa_choice = sorted_medusa_choices[start + j]
# retrieve ancestor position
if len(cur_medusa_choice) == 1:
continue
ancestor_idx = []
for c in range(len(cur_medusa_choice) - 1):
ancestor_idx.append(sorted_medusa_choices.index(cur_medusa_choice[:c+1]) + 1)
medusa_attn_mask[j + start + 1, ancestor_idx] = 1
start += depth_counts[i]
# Generate tree indices for the Medusa structure
medusa_tree_indices = torch.zeros(medusa_len, dtype=torch.long)
medusa_tree_indices[0] = 0
start = 0
for i in range(len(depth_counts)):
for j in range(depth_counts[i]):
cur_medusa_choice = sorted_medusa_choices[start + j]
medusa_tree_indices[start + j + 1] = cur_medusa_choice[-1] + TOPK * i + 1
start += depth_counts[i]
# Generate position IDs for the Medusa structure
medusa_position_ids = torch.zeros(medusa_len, dtype=torch.long)
start = 0
for i in range(len(depth_counts)):
medusa_position_ids[start + 1: start + depth_counts[i] + 1] = i + 1
start += depth_counts[i]
# Generate retrieval indices for Medusa structure verification
retrieve_indices_nest = []
retrieve_paths = []
for i in range(len(sorted_medusa_choices)):
cur_medusa_choice = sorted_medusa_choices[-i-1]
retrieve_indice = []
if cur_medusa_choice in retrieve_paths:
continue
else:
for c in range(len(cur_medusa_choice)):
retrieve_indice.append(sorted_medusa_choices.index(cur_medusa_choice[:c+1]))
retrieve_paths.append(cur_medusa_choice[:c+1])
retrieve_indices_nest.append(retrieve_indice)
max_length = max([len(x) for x in retrieve_indices_nest])
retrieve_indices = [pad_path(path, max_length) for path in retrieve_indices_nest]
retrieve_indices = torch.tensor(retrieve_indices, dtype=torch.long)
retrieve_indices = retrieve_indices + 1
retrieve_indices = torch.cat([torch.zeros((retrieve_indices.shape[0], 1), dtype=torch.long), retrieve_indices], dim=1)
# Aggregate the generated buffers into a dictionary
medusa_buffers = {
"medusa_attn_mask": medusa_attn_mask.unsqueeze(0).unsqueeze(0),
"tree_indices": medusa_tree_indices,
"medusa_position_ids": medusa_position_ids.unsqueeze(0),
"retrieve_indices": retrieve_indices,
}
# Move the tensors in the dictionary to the specified device
medusa_buffers = {
k: v.clone().to(device)
if isinstance(v, torch.Tensor)
else torch.tensor(v, device=device)
for k, v in medusa_buffers.items()
}
return medusa_buffers
def generate_candidates(
medusa_logits,
logits,
tree_indices,
retrieve_indices,
temperature = 0,
posterior_threshold=0.3,
posterior_alpha = 0.09,
top_p=0.8,
sampling = 'typical',
fast = False
):
# Say we have 3 heads, and the top-4 for each head are:
# [10, 3, 8, 4]
# [9, 5, 1, 6]
# [7, 16, 3, 2]
# candidates_id = 10
if temperature == 0 or fast:
candidates_ids = torch.argmax(logits[:, -1]).unsqueeze(0)
else:
if sampling == 'typical':
candidates_ids = get_typical_one_token(logits[:, -1], temperature, posterior_threshold, posterior_alpha).squeeze(0)
elif sampling == 'nucleus':
candidates_ids = get_nucleus_one_token(logits[:, -1], temperature, top_p).squeeze(0)
else:
raise NotImplementedError
# this calculates the top-k medusa logits
# candidates_medusa_id = [
# [9, 5, 1, 6]
# [7, 16, 3, 2]
# ]
candidates_medusa_ids = torch.topk(medusa_logits[:, 0, -1], TOPK, dim=-1).indices
# [10, 9, 5, 1, 6, 7, 16, 3, 2]
candidate_ids = torch.cat([candidates_ids, candidates_medusa_ids.view(-1)], dim=-1)
# based on the pre-defined tree_indices, select the corresponding candidates
# if we select top-2 and top-3 for the two heads (we select top-1 for the first head):
# tree_candidates = [10, 9, 5, 7, 16, 3, 7, 16, 3]
tree_candidate_ids = candidate_ids[tree_indices]
# tree_candidate_ids = [10, 9, 5, 7, 16, 3, 7, 16, 3, 0]
# Sometimes the tree_indices are padded, so we append a zero here
# so that all padded indices select the appended zero.
tree_candidate_ids_ext = torch.cat(
[
tree_candidate_ids,
torch.zeros((1), dtype=torch.long, device=tree_candidate_ids.device)
],
dim=0
)
# [[10, 9, 7], [10, 9, 16], [10, 9, 3], [10, 5, 7], [10, 5, 16], [10, 5, 3]]
unflattened_candidate_ids = tree_candidate_ids_ext[retrieve_indices]
tree_candidate_ids = tree_candidate_ids.unsqueeze(0)
return tree_candidate_ids, unflattened_candidate_ids
def get_nucleus_posterior_mask(logits, candidates, temperature, top_p):
"""
Generates a posterior mask for token candidates using nucleus (top-p) sampling.
This function applies nucleus sampling to a set of logits, and then generates a mask indicating
which candidate tokens are selected. It adapts the sampling strategy to accommodate for
temperature scaling and cumulative probability thresholding.
Args:
logits (torch.Tensor): A tensor of logits from a language model output.
candidates (torch.Tensor): A tensor of candidate tokens to compare against sampled tokens.
temperature (float): A parameter to scale the logits, controlling randomness in sampling.
top_p (float): The cumulative probability threshold for nucleus sampling.
Returns:
torch.Tensor: A posterior mask indicating which candidate tokens match the sampled tokens.
"""
# adapted from https://github.com/huggingface/transformers/blob/18a879f47576822aa1a5c49aecb27d89bfa5fa69/examples/run_generation.py#L79
# Apply temperature
logits = logits[:, :-1] / temperature
n_samples, n_tokens = logits.shape[0], logits.shape[1]
logits = logits.view(n_samples*n_tokens, -1)
if top_p >= 1:
sampled_tokens = torch.multinomial(F.softmax(logits, dim=-1), 1)
sampled_tokens = sampled_tokens.view(n_samples, n_tokens)
posterior_mask = (candidates[:, 1:] == sampled_tokens).int()
return posterior_mask
# Convert to probabilities (softmax)
probs = F.softmax(logits, dim=-1)
# Sort the probabilities
sorted_logits, sorted_indices = torch.sort(probs, descending=True)
# Compute cumulative probabilities
cum_probs = torch.cumsum(sorted_logits, dim=-1)
# Create mask for the top-p nucleus
sorted_indices_to_remove = cum_probs > top_p
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
sorted_indices_to_remove[..., 0] = 0
indices_to_remove = sorted_indices_to_remove.scatter(dim=1, index=sorted_indices, src=sorted_indices_to_remove)
# Remove low-probability tokens
logits[indices_to_remove] = float('-inf')
# Sample from the remaining tokens
sampled_tokens = torch.multinomial(F.softmax(logits, dim=-1), 1)
sampled_tokens = sampled_tokens.view(n_samples, n_tokens)
# Create a mask for selected tokens
posterior_mask = (candidates[:, 1:] == sampled_tokens).int()
return posterior_mask
def get_typical_posterior_mask(logits, candidates, temperature, posterior_threshold, posterior_alpha):
"""
Args:
logits (torch.Tensor): A tensor of logits from a language model output.
candidates (torch.Tensor): A tensor of candidate tokens to compare against sampled tokens.
temperature (float): A parameter to scale the logits, controlling randomness in sampling.
posterior_threshold (float): The minimum threshold for probabilities to be considered in sampling.
posterior_alpha (float): A scaling factor applied to the entropy-based adaptive threshold.
Returns:
torch.Tensor: A posterior mask indicating which candidate tokens match the sampled tokens.
"""
logits = logits[:, :-1] / temperature
n_samples, n_tokens = logits.shape[0], logits.shape[1]
logits = logits.view(n_samples*n_tokens, -1)
probs = F.softmax(logits, dim=-1)
entropy = -torch.sum(
probs * torch.log(probs + 1e-5), dim=-1
)
threshold = torch.minimum(
torch.ones_like(entropy) * posterior_threshold,
torch.exp(-entropy) * posterior_alpha,
)
indices_to_remove = probs < threshold.unsqueeze(-1)
logits[indices_to_remove] = float('-inf')
sampled_tokens = torch.multinomial(F.softmax(logits, dim=-1), 1)
sampled_tokens = sampled_tokens.view(n_samples, n_tokens)
posterior_mask = (candidates[:, 1:] == sampled_tokens).int()
return posterior_mask
def evaluate_posterior(
logits,
candidates,
temperature,
posterior_threshold=0.3,
posterior_alpha = 0.09,
top_p=0.8,
sampling = 'typical',
fast = True
):
if logits.shape[1] <= 1:
return torch.tensor(0, dtype=torch.long, device=candidates.device), 0
# Greedy decoding based on temperature value
if temperature == 0:
# Find the tokens that match the maximum logits for each position in the sequence
posterior_mask = (
candidates[:, 1:] == torch.argmax(logits[:, :-1], dim=-1)
).int()
candidates_accept_length = (torch.cumprod(posterior_mask, dim=1)).sum(dim=1)
accept_length = candidates_accept_length.max().item()
# Choose the best candidate
if accept_length == 0:
# Default to the first candidate if none are accepted
best_candidate = torch.tensor(0, dtype=torch.long, device=candidates.device)
else:
best_candidate = torch.argmax(candidates_accept_length).to(torch.long)
return best_candidate, accept_length
elif sampling == 'typical':
if fast:
posterior_prob = torch.softmax(logits[:, :-1] / temperature, dim=-1)
candidates_prob = torch.gather(
posterior_prob, dim=-1, index=candidates[:, 1:].unsqueeze(-1)
).squeeze(-1)
posterior_entropy = -torch.sum(
posterior_prob * torch.log(posterior_prob + 1e-5), dim=-1
) # torch.sum(torch.log(*)) is faster than torch.prod
threshold = torch.minimum(
torch.ones_like(posterior_entropy) * posterior_threshold,
torch.exp(-posterior_entropy) * posterior_alpha,
)
posterior_mask = candidates_prob > threshold
candidates_accept_length = (torch.cumprod(posterior_mask, dim=1)).sum(dim=1)
# Choose the best candidate based on the evaluated posterior probabilities
accept_length = candidates_accept_length.max().item()
if accept_length == 0:
# If no candidates are accepted, just choose the first one
best_candidate = torch.tensor(0, dtype=torch.long, device=candidates.device)
else:
best_candidates = torch.where(candidates_accept_length == accept_length)[0]
# Accept the best one according to likelihood
likelihood = torch.sum(
torch.log(candidates_prob[best_candidates, :accept_length]), dim=-1
)
best_candidate = best_candidates[torch.argmax(likelihood)]
return best_candidate, accept_length
# Calculate posterior probabilities and thresholds for candidate selection
posterior_mask = get_typical_posterior_mask(logits, candidates, temperature, posterior_threshold, posterior_alpha)
candidates_accept_length = (torch.cumprod(posterior_mask, dim=1)).sum(dim=1)
# Choose the best candidate based on the evaluated posterior probabilities
accept_length = candidates_accept_length.max().item()
if accept_length == 0:
# If no candidates are accepted, just choose the first one
best_candidate = torch.tensor(0, dtype=torch.long, device=candidates.device)
else:
best_candidate = torch.argmax(candidates_accept_length).to(torch.long)
# Accept the best one according to likelihood
return best_candidate, accept_length
elif sampling == 'nucleus':
assert top_p < 1.0 + 1e-6, "top_p should between 0 and 1"
posterior_mask = get_nucleus_posterior_mask(logits, candidates, temperature, top_p)
candidates_accept_length = (torch.cumprod(posterior_mask, dim=1)).sum(dim=1)
accept_length = candidates_accept_length.max().item()
# Choose the best candidate
if accept_length == 0:
# Default to the first candidate if none are accepted
best_candidate = torch.tensor(0, dtype=torch.long, device=candidates.device)
else:
best_candidate = torch.argmax(candidates_accept_length).to(torch.long)
return best_candidate, accept_length
else:
raise NotImplementedError
def update_inference_inputs(
input_ids,
medusa_logits,
logits,
candidate_ids,
best_candidate,
accept_length,
):
input_ids = torch.cat(
[
input_ids,
candidate_ids[None, best_candidate, : accept_length + 1]
],
dim=-1
)
logits = logits[
None, best_candidate, accept_length : accept_length + 1
]
medusa_logits = medusa_logits[
:, None, best_candidate, accept_length : accept_length + 1
]
# Update the new token counter
new_token = accept_length + 1
return input_ids, medusa_logits, logits, new_token
def split_logits(full_logits):
# logits has shape [b, n, heads, vocab_size]
logits = full_logits[..., 0, :]
medusa_logits = full_logits[..., 1:, :].permute(2, 0, 1, 3)
return medusa_logits, logits
class MultiByteDecodingMixin:
def multi_byte_pred_update_cache(
self,
past_key_values,
retrieve_indices,
best_candidate,
new_tokens,
):
prev_window_len = past_key_values.get_past_window_pos(0)
select_indices = (
retrieve_indices[best_candidate, : new_tokens] + prev_window_len
)
for layer_idx in range(self.config.num_hidden_layers):
past_key_values.update_past_len(new_tokens, layer_idx)
past_window_k = past_key_values.past_window_k[layer_idx]
past_window_v = past_key_values.past_window_v[layer_idx]
tgt_window_k = past_window_k[..., select_indices, :]
tgt_window_v = past_window_v[..., select_indices, :]
dst_window_k = past_window_k[..., prev_window_len : prev_window_len + new_tokens, :]
dst_window_v = past_window_v[..., prev_window_len : prev_window_len + new_tokens, :]
dst_window_k.copy_(tgt_window_k, non_blocking=True)
dst_window_v.copy_(tgt_window_v, non_blocking=True)
new_window_len = prev_window_len + new_tokens
if new_window_len >= self.config.window_size:
assert new_window_len < 2 * self.config.window_size
dump_k = past_window_k[..., :self.config.window_size, :].clone()
dump_v = past_window_v[..., :self.config.window_size, :].clone()
_window_len = new_window_len - self.config.window_size
if _window_len > 0:
new_window_k = past_window_k[..., self.config.window_size : new_window_len, :]
new_window_v = past_window_v[..., self.config.window_size : new_window_len, :]
_dst_window_k = past_window_k[..., : _window_len, :]
_dst_window_v = past_window_v[..., : _window_len, :]
_dst_window_k.copy_(new_window_k, non_blocking=True)
_dst_window_v.copy_(new_window_v, non_blocking=True)
past_key_values.past_window_pos[layer_idx] = _window_len
else:
dump_k = None
dump_v = None
past_key_values.past_window_pos[layer_idx] = new_window_len
if dump_k is not None and dump_v is not None:
rfa_k, rfa_v = triton_eva_prep_kv_fwd(
dump_k, dump_v,
self.model.layers[layer_idx].self_attn.adaptive_mu_k,
self.model.layers[layer_idx].self_attn.adaptive_phi,
None,
self.model.layers[layer_idx].self_attn.head_dim_scaling,
self.model.layers[layer_idx].self_attn.chunk_size
)
rfa_k, rfa_v = past_key_values.update_chunk_rfas(
rfa_k, rfa_v, layer_idx
)
return past_key_values
def _multi_byte_pred_update_cache_when_prefil_len_eq_window_size(
self,
past_key_values,
):
prev_window_len = past_key_values.get_past_window_pos(0)
for layer_idx in range(self.config.num_hidden_layers):
past_window_k = past_key_values.past_window_k[layer_idx]
past_window_v = past_key_values.past_window_v[layer_idx]
new_window_len = prev_window_len
if new_window_len == self.config.window_size:
dump_k = past_window_k[..., :self.config.window_size, :].clone()
dump_v = past_window_v[..., :self.config.window_size, :].clone()
past_key_values.past_window_pos[layer_idx] = 0
if dump_k is not None and dump_v is not None:
rfa_k, rfa_v = triton_eva_prep_kv_fwd(
dump_k, dump_v,
self.model.layers[layer_idx].self_attn.adaptive_mu_k,
self.model.layers[layer_idx].self_attn.adaptive_phi,
None,
self.model.layers[layer_idx].self_attn.head_dim_scaling,
self.model.layers[layer_idx].self_attn.chunk_size
)
rfa_k, rfa_v = past_key_values.update_chunk_rfas(
rfa_k, rfa_v, layer_idx
)
return past_key_values
def multi_byte_pred_update_attn_mask(
self,
last_iter_new_tokens,
tree_candidate_ids,
past_attn_mask,
medusa_attn_mask,
past_key_values,
):
batch_size, tree_candidate_len = tree_candidate_ids.shape
seen_tokens = past_key_values.get_seq_length()
# NOTE: past_key_values has been updated so now
# seen_tokens incldues new tokens from the last tree iteration
assert seen_tokens > 0
# so one iteration would not cross two windows
assert last_iter_new_tokens < self.config.window_size
if past_attn_mask is not None and seen_tokens < self.config.window_size:
past_attn_mask = torch.cat(
[
past_attn_mask,
torch.ones(
[batch_size, 1, tree_candidate_len, last_iter_new_tokens],
dtype=torch.bool,
device=self.device
)
],
dim=-1
)
else:
# we initialize attn mask each time when
# 1. the model crosses the window bounary, or
# 2. after prefilling
chunks_per_window = int(self.config.window_size // self.config.chunk_size)
window_tokens = seen_tokens % self.config.window_size
num_windows_seen_so_far = seen_tokens // self.config.window_size
attn_mask_len = num_windows_seen_so_far * chunks_per_window + window_tokens
past_attn_mask = torch.ones(
(batch_size, 1, tree_candidate_len, attn_mask_len),
dtype=torch.bool,
device=self.device
)
# note that 1 indicates the position is not masked
tree_attn_mask = torch.cat(
[
past_attn_mask,
medusa_attn_mask.to(torch.bool)
],
dim=-1
)
return tree_attn_mask, past_attn_mask
@torch.no_grad()
def multi_byte_generate(
self,
input_ids,
attention_mask=None,
temperature=0.0,
max_length=None,
max_new_tokens=None,
stopping_criteria=None,
posterior_threshold=0.09,
posterior_alpha=0.3,
top_p=0.8,
sampling='typical',
fast=True,
do_sample=False,
medusa_choices=None,
return_acc_lengths=False
):
if do_sample or temperature > 0.0:
fast = False
### Prepare `max_length` depending on other stopping criteria.
if max_new_tokens is not None:
max_length = max_new_tokens + input_ids.shape[-1]
elif max_new_tokens is None and max_length is None:
max_length = getattr(self.config, "max_position_embeddings", 32768)
### Set up stopping criteria
eos_stop_criteria = MultibyteEosTokenCriteria(self.generation_config.eos_token_id)
stop_criteria = StoppingCriteriaList()
if max_length is not None:
max_position_embeddings = getattr(self.config, "max_position_embeddings", None)
stop_criteria.append(
MaxLengthCriteria(
max_length=max_length,
max_position_embeddings=max_position_embeddings,
)
)
if stopping_criteria is not None and len(stopping_criteria) > 0:
stop_criteria.extend(stopping_criteria)
assert input_ids.shape[0] == 1, "Only support batch size 1 for now"
assert attention_mask is None, "Only support attention mask None for now"
# Avoid modifying the input_ids in-place
input_ids = input_ids.clone()
position_ids = torch.arange(0, input_ids.shape[1], device=self.device, dtype=int).reshape(1, -1)
####################################################
# 0. initialize the medusa buffers
####################################################
if medusa_choices is None:
medusa_choices = evabyte_7b_95
medusa_buffers = generate_medusa_buffers(
medusa_choices, device=self.device
)
past_key_values = EvaStaticCacheForTriton(
input_ids.shape[0],
self.config.num_attention_heads,
# we add 256 to allow tree ids
self.config.window_size + 256,
self.config.hidden_size // self.config.num_attention_heads,
self.config.num_hidden_layers,
self.lm_head.weight.dtype,
self.lm_head.weight.device,
)
# prefill to get medusa logits and logits
full_logits, past_key_values = self.forward(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
use_cache=True,
past_key_values=past_key_values,
return_all_pred_logits=True,
multibyte_decoding=False,
)
# handles an edge case where the prefill length == window_size
# we force the previous window to be dumped into RFA chunks
past_key_values = self._multi_byte_pred_update_cache_when_prefil_len_eq_window_size(
past_key_values
)
medusa_logits, logits = split_logits(full_logits)
past_attn_mask = None
last_iter_new_tokens = 0
max_iters = 32768
if return_acc_lengths:
acc_lengths = []
for _ in range(max_iters):
####################################################
# 1. generate candidate_ids with topk predictions from Medusa heads
####################################################
tree_candidate_ids, unflattened_candidate_ids = generate_candidates(
medusa_logits,
logits,
medusa_buffers["tree_indices"],
medusa_buffers["retrieve_indices"],
temperature=temperature,
posterior_alpha=posterior_alpha,
posterior_threshold=posterior_threshold,
top_p=top_p,
sampling=sampling,
fast=fast,
)
####################################################
# 2. Build the medusa attention mask and position ids
####################################################
# NOTE: 1 indicates the position is not masked
medusa_attn_mask, past_attn_mask = self.multi_byte_pred_update_attn_mask(
last_iter_new_tokens,
tree_candidate_ids,
past_attn_mask,
medusa_buffers["medusa_attn_mask"],
past_key_values,
)
medusa_position_ids = medusa_buffers["medusa_position_ids"] + input_ids.shape[1]
####################################################
# 3. tree decoding
####################################################
tree_full_logits, past_key_values = self.forward(
tree_candidate_ids,
past_key_values=past_key_values,
attention_mask=medusa_attn_mask,
position_ids=medusa_position_ids,
return_all_pred_logits=True,
multibyte_decoding=True,
)
_medusa_logits, _logits = split_logits(tree_full_logits)
medusa_logits = _medusa_logits[..., 0, medusa_buffers["retrieve_indices"], :]
logits = _logits[..., 0, medusa_buffers["retrieve_indices"], :]
####################################################
# 4. candidate selection
####################################################
# if the current iteration, with tree tokens, crosses window
# boundaries, trim the condidate_ids to be within the window
# so that those exceeded tokens (which will be inaccurate)
# will not be considered
tree_depth = unflattened_candidate_ids.shape[-1]
if tree_depth + past_key_values.get_past_window_pos(0) > self.config.window_size:
max_acc_len = self.config.window_size - past_key_values.get_past_window_pos(0)
_trimmed_unflattened_candidate_ids = unflattened_candidate_ids[:, :max_acc_len]
_trimmed_logits = logits[:, :max_acc_len]
else:
_trimmed_unflattened_candidate_ids = unflattened_candidate_ids
_trimmed_logits = logits
best_candidate, accept_length = evaluate_posterior(
_trimmed_logits,
_trimmed_unflattened_candidate_ids,
temperature,
posterior_threshold,
posterior_alpha,
top_p=top_p,
sampling=sampling,
fast=fast
)
####################################################
# 5. update model inputs and caches
####################################################
input_ids, medusa_logits, logits, last_iter_new_tokens = update_inference_inputs(
input_ids,
medusa_logits,
logits,
unflattened_candidate_ids,
best_candidate,
accept_length,
)
past_key_values = self.multi_byte_pred_update_cache(
past_key_values,
medusa_buffers["retrieve_indices"],
best_candidate,
last_iter_new_tokens,
)
if return_acc_lengths:
acc_lengths.append(last_iter_new_tokens)
if stop_criteria(input_ids, None) or eos_stop_criteria(input_ids, last_iter_new_tokens):
if return_acc_lengths:
return input_ids, acc_lengths
else:
return input_ids
if return_acc_lengths:
return input_ids, acc_lengths
else:
return input_ids
|