File size: 30,433 Bytes
474addc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
from typing import Dict, Optional, Tuple, List, Any, Union
import torch
from transformers.cache_utils import Cache

class EvaCache(Cache):
    """
    A cache that grows dynamically as more tokens are generated. This is the default for generative models.

    It stores the Key and Value states as a list of tensors, one for each layer. The expected shape for each tensor is
    `[batch_size, num_heads, seq_len, head_dim]`.
    """

    def __init__(self) -> None:
        self.w_k: List[torch.Tensor] = []
        self.w_v: List[torch.Tensor] = []

        self.rf_q: List[torch.Tensor] = []
        self.rf_k: List[torch.Tensor] = []
        self.rf_v: List[torch.Tensor] = []

        self.softmax_phi_k_v: List[torch.Tensor] = []
        self.log_sum_phi_k: List[torch.Tensor] = []
        self.rf_k_bar: List[torch.Tensor] = []
        self._seen_tokens = 0  # Used in `generate` to keep tally of how many tokens the cache has seen

        # attention masks temporary buffer
        self.rf_mask: List[Optional[torch.Tensor]] = []
        self.s_mask: List[torch.Tensor] = []
        self.chunk_mask: List[torch.Tensor] = []

    def __len__(self):
        """
        Support for backwards-compatible `past_key_value` length, e.g. `len(past_key_value)`. This value corresponds
        to the number of layers in the model.
        """
        return len(self.w_k)

    def get_usable_length(self, new_seq_length: int, layer_idx: Optional[int] = 0) -> int:
        """Given the sequence length of the new inputs, returns the usable length of the cache."""
        # Cache without size limit -> all cache is usable
        # Cache with size limit -> if the length cache plus the length of the new inputs is larger the maximum cache
        #   length, we will need to evict part of the cache (and thus not all cache is usable)
        max_length = self.get_max_length()
        previous_seq_length = self.get_seq_length(layer_idx)
        if max_length is not None and previous_seq_length + new_seq_length > max_length:
            return max_length - new_seq_length
        return previous_seq_length

    def reorder_cache(self, beam_idx: torch.LongTensor):
        """Reorders the cache for beam search, given the selected beam indices."""
        for layer_idx in range(len(self.w_k)):
            device = self.w_k[layer_idx].device
            self.w_k[layer_idx] = self.w_k[layer_idx].index_select(0, beam_idx.to(device))

            device = self.w_v[layer_idx].device
            self.w_v[layer_idx] = self.w_v[layer_idx].index_select(0, beam_idx.to(device))

            device = self.rf_q[layer_idx].device
            self.rf_q[layer_idx] = self.rf_q[layer_idx].index_select(0, beam_idx.to(device))

            device = self.rf_k[layer_idx].device
            self.rf_k[layer_idx] = self.rf_k[layer_idx].index_select(0, beam_idx.to(device))

            device = self.rf_v[layer_idx].device
            self.rf_v[layer_idx] = self.rf_v[layer_idx].index_select(0, beam_idx.to(device))

            device = self.softmax_phi_k_v[layer_idx].device
            self.softmax_phi_k_v[layer_idx] = self.softmax_phi_k_v[layer_idx].index_select(0, beam_idx.to(device))

            device = self.log_sum_phi_k[layer_idx].device
            self.log_sum_phi_k[layer_idx] = self.log_sum_phi_k[layer_idx].index_select(0, beam_idx.to(device))

            device = self.rf_k_bar[layer_idx].device
            self.rf_k_bar[layer_idx] = self.rf_k_bar[layer_idx].index_select(0, beam_idx.to(device))

            device = self.rf_mask[layer_idx].device
            self.rf_mask[layer_idx] = self.rf_mask[layer_idx].index_select(0, beam_idx.to(device))

            device = self.s_mask[layer_idx].device
            self.s_mask[layer_idx] = self.s_mask[layer_idx].index_select(0, beam_idx.to(device))

            device = self.chunk_mask[layer_idx].device
            self.chunk_mask[layer_idx] = self.chunk_mask[layer_idx].index_select(0, beam_idx.to(device))
    @property
    def seen_tokens(self):
        if hasattr(self, "_seen_tokens"):
            return self._seen_tokens
        else:
            return None

    def update_past_len(
        self,
        cur_q_len: int,
        layer_idx: int
    ):
        # Update the number of seen tokens
        if layer_idx == 0:
            self._seen_tokens += cur_q_len
        return self._seen_tokens

    def update_mask(
            self,
            prev_s_mask,
            cur_s_mask,
            chunk_mask,
            rf_mask,
            layer_idx,
            window_size,
            chunk_size,
    ):
        ############################################
        # compute masks for singletons
        ############################################
        q_len = None
        if len(self.s_mask) <= layer_idx:
            q_len = chunk_mask.shape[-2]
            # prefill stage
            # q is of shape [b, h, n, d]
            if q_len < window_size:
                assert prev_s_mask is None

            # w_v =  # [b, h, 1, j, d]
            # store the past window-wise key-value pairs
            self.s_mask.append(cur_s_mask[..., -1:, :] if cur_s_mask is not None else prev_s_mask[..., -1, -1:, :])
        else:
            # decoding stage
            prev_s_mask = None

            cached_s_mask = self.s_mask[layer_idx]
            assert cached_s_mask is not None
            if cached_s_mask.shape[-1] == window_size:
                cur_s_mask = cur_s_mask
            else:
                cur_s_mask = torch.cat([cached_s_mask, cur_s_mask], dim=-1)

            # store the past window-wise key-value pairs
            self.s_mask[layer_idx] = cur_s_mask

        ############################################
        # compute masks for intra-chunks
        ############################################
        dump_rf_mask = None
        if len(self.rf_mask) <= layer_idx:
            # initialize chunk stats
            # prefill stage
            if q_len < chunk_size:
                cur_rf_mask = rf_mask
            else:
                if q_len % chunk_size == 0:
                    dump_rf_mask = rf_mask
                    cur_rf_mask = None
                else:
                    remainder_tokens = q_len % chunk_size
                    if rf_mask is not None:
                        dump_rf_mask, cur_rf_mask = torch.split(rf_mask, [q_len - remainder_tokens, remainder_tokens], dim=-2)
                    else:
                        dump_rf_mask = None
                        cur_rf_mask = None
            self.rf_mask.append(cur_rf_mask)
        else:
            past_rf_mask = self.rf_mask[layer_idx]
            if past_rf_mask is not None:
                # when decoding tokens, we always assume the 
                # incoming token mask is 0 (not masked)
                cur_rf_mask = torch.cat([past_rf_mask, rf_mask], dim=-2)
            else:
                # we do not need to use rf_mask anymore after we receive generated tokens
                cur_rf_mask = None
            # We need to store rf_k_bar and RFA-results that 
            # compute the per-chunk RFA.
            
            # Dump the chunk if the len of current chunk reaches <chunk_size>.
            if cur_rf_mask is not None and cur_rf_mask.shape[-2] == chunk_size:
                dump_rf_mask = cur_rf_mask
                cur_rf_mask = None

            self.rf_mask[layer_idx] = cur_rf_mask

        ############################################
        # compute masks for inter chunks
        ############################################
        if len(self.chunk_mask) <= layer_idx:
            # prefill stage
            # q is of shape [b, h, n, d]
            if q_len < window_size:
                cur_chunk_mask = chunk_mask
                prev_chunk_mask = None
            else:
                if q_len % window_size == 0:
                    cur_chunk_mask = None
                    prev_chunk_mask = chunk_mask
                else:
                    remainder_tokens = q_len % window_size
                    # [b, h, n-r, d] [b, h, r, d]
                    prev_chunk_mask, cur_chunk_mask = torch.split(chunk_mask, [q_len - remainder_tokens, remainder_tokens], dim=-2)
                bsz, num_heads, _, head_dim = prev_chunk_mask.shape
                prev_chunk_mask = prev_chunk_mask.reshape(bsz, num_heads, -1, window_size, head_dim)

                assert prev_s_mask is not None
                if prev_s_mask.shape[-3] == 1 and prev_chunk_mask.shape[-3] > 1:
                    # need to expand
                    prev_s_mask = prev_s_mask.expand(-1, -1, prev_chunk_mask.shape[-3], -1, -1)
            # w_v =  # [b, h, 1, j, d]
            # store the past window-wise key-value pairs
            self.chunk_mask.append(cur_chunk_mask[..., -1:, :] if cur_chunk_mask is not None else prev_chunk_mask[..., -1, -1:, :])
        else:
            # decoding stage
            prev_chunk_mask = None
            cur_chunk_mask = self.chunk_mask[layer_idx]

            # if the current sequence length reaches <chunk_size>,
            # we append a new 1 to the end of chunk_mask
            seen_seq_len = self.get_seq_length(layer_idx)
            if seen_seq_len > 0 and seen_seq_len % chunk_size == 0:
                past_chunk_mask = self.chunk_mask[layer_idx]
                if past_chunk_mask is not None:
                    # when decoding tokens, we always assume the 
                    # incoming token mask is 0 (not masked)
                    cur_chunk_mask = torch.cat([past_chunk_mask, chunk_mask], dim=-1)
                else:
                    cur_chunk_mask = chunk_mask
                self.chunk_mask[layer_idx] = cur_chunk_mask

            # if the len of current sequence reaches <window_size> + 1,
            # we turn on the mask for most recent chunks
            if seen_seq_len > 0 and seen_seq_len % window_size == 1:
                cur_chunk_mask = self.chunk_mask[layer_idx]
                # we do not need to use rf_mask anymore after we receive generated tokens
                num_chunks_per_window = window_size // chunk_size
                cur_chunk_mask[..., -num_chunks_per_window:] = False
                self.chunk_mask[layer_idx] = cur_chunk_mask

        return (prev_s_mask, cur_s_mask, prev_chunk_mask, cur_chunk_mask, dump_rf_mask)

    def update_singletons(
            self,
            q,
            k,
            v,
            layer_idx,
            window_size,
    ):
        if len(self.w_k) <= layer_idx:
            # prefill stage
            # q is of shape [b, h, n, d]
            q_len = q.shape[-2]
            if q_len < window_size:
                w_q = q
                w_k = k
                w_v = v
                past_w_q = past_w_k = past_w_v = None
            else:
                if q_len % window_size == 0:
                    w_q = None
                    w_k = None
                    w_v = None
                    past_w_q = q
                    past_w_k = k
                    past_w_v = v
                else:
                    remainder_tokens = q_len % window_size
                    # [b, h, n-r, d] [b, h, r, d]
                    past_w_q, w_q = torch.split(q, [q_len - remainder_tokens, remainder_tokens], dim=-2) 
                    past_w_k, w_k = torch.split(k, [q_len - remainder_tokens, remainder_tokens], dim=-2)
                    past_w_v, w_v = torch.split(v, [q_len - remainder_tokens, remainder_tokens], dim=-2)
                bsz, num_heads, _, head_dim = past_w_q.shape
                past_w_q = past_w_q.reshape(bsz, num_heads, -1, window_size, head_dim)
                past_w_k = past_w_k.reshape(bsz, num_heads, -1, window_size, head_dim)
                past_w_v = past_w_v.reshape(bsz, num_heads, -1, window_size, head_dim)
            # w_q = q[..., None, -window_size:, :] # [b, h, 1, j, d]
            # w_k =  # [b, h, 1, j, d]
            # w_v =  # [b, h, 1, j, d]
            # store the past window-wise key-value pairs
            # if w_k is None, it means we happen to pass in a sqeuence that is divisible by window_size
            # we leave the cache with window_size-sized kv pairs to be cleared next iteration
            self.w_k.append(w_k if w_k is not None else past_w_k[..., -1, :, :])
            self.w_v.append(w_v if w_v is not None else past_w_v[..., -1, :, :])
        else:
            # decoding stage
            past_w_q = past_w_k = past_w_v = None
            # this is implemented as either a sliding window or fixed window
            w_q = q # [b, h, 1, d]
            w_k = k # [b, h, 1, d]
            w_v = v # [b, h, 1, d]
            
            cached_w_k = self.w_k[layer_idx]
            assert cached_w_k is not None # [b, h, j, d]
            if cached_w_k.shape[-2] == window_size:
                w_k = w_k
            else:
                w_k = torch.cat([cached_w_k, w_k], dim=-2)
            
            cached_w_v = self.w_v[layer_idx]
            assert cached_w_v is not None
            if cached_w_v.shape[-2] == window_size:
                w_v = w_v
            else:
                w_v = torch.cat([cached_w_v, w_v], dim=-2)

            # store the past window-wise key-value pairs
            self.w_k[layer_idx] = w_k
            self.w_v[layer_idx] = w_v
        return (past_w_q, past_w_k, past_w_v), (w_q, w_k, w_v)

    def update_chunks(
            self,
            q,
            k,
            v,
            layer_idx,
            chunk_size
    ):
        q_len = q.shape[-2]
        dump_q = None
        dump_k = None
        dump_v = None
        if len(self.rf_q) <= layer_idx:
            # initialize chunk stats
            # prefill stage
            if q_len < chunk_size:
                rf_q = q
                rf_k = k
                rf_v = v
            else:
                if q_len % chunk_size == 0:
                    rf_q = None
                    rf_k = None
                    rf_v = None
                    dump_q = q
                    dump_k = k
                    dump_v = v
                else:
                    remainder_tokens = q_len % chunk_size
                    # [b, h, n-r, d] [b, h, r, d]
                    dump_q, rf_q = torch.split(q, [q_len - remainder_tokens, remainder_tokens], dim=-2) 
                    dump_k, rf_k = torch.split(k, [q_len - remainder_tokens, remainder_tokens], dim=-2)
                    dump_v, rf_v = torch.split(v, [q_len - remainder_tokens, remainder_tokens], dim=-2)
            self.rf_q.append(rf_q)
            self.rf_k.append(rf_k)
            self.rf_v.append(rf_v)
        else:
            # decode tokens
            # add query, key & value to the current chunk.
            past_rf_q = self.rf_q[layer_idx]
            if past_rf_q is not None:
                rf_q = torch.cat([past_rf_q, q], dim=-2)
            else:
                rf_q = q
        
            past_rf_k = self.rf_k[layer_idx]
            if past_rf_k is not None:
                rf_k = torch.cat([past_rf_k, k], dim=-2)
            else:
                rf_k = k
        
            past_rf_v = self.rf_v[layer_idx]
            if past_rf_v is not None:
                rf_v = torch.cat([past_rf_v, v], dim=-2)
            else:
                rf_v = v

            # We need to store rf_k_bar and RFA-results that 
            # compute the per-chunk RFA.
            
            # Dump the chunk if the len of current chunk reaches <chunk_size>.
            if rf_q.shape[-2] == chunk_size:
                dump_q = rf_q
                dump_k = rf_k
                dump_v = rf_v
                # clear the chunk
                rf_q = None
                rf_k = None
                rf_v = None
        
            self.rf_q[layer_idx] = rf_q
            self.rf_k[layer_idx] = rf_k
            self.rf_v[layer_idx] = rf_v

        return dump_q, dump_k, dump_v

    def update_chunk_rfas(
        self,
        softmax_phi_k_v,
        log_sum_phi_k,
        rf_k_bar,
        layer_idx,
        random_feature_dim
    ):
        if len(self.softmax_phi_k_v) <= layer_idx:
            # prefill stage
            self.softmax_phi_k_v.append(softmax_phi_k_v)
            self.log_sum_phi_k.append(log_sum_phi_k)
            self.rf_k_bar.append(rf_k_bar)
        else:
            # token decoding
            past_softmax_phi_k_v = self.softmax_phi_k_v[layer_idx]
            past_log_sum_phi_k = self.log_sum_phi_k[layer_idx]
            past_rf_k_bar = self.rf_k_bar[layer_idx]

            if past_softmax_phi_k_v is not None:
                if random_feature_dim == 1:
                    dim = -2
                else:
                    dim = -3
                softmax_phi_k_v = torch.cat([past_softmax_phi_k_v, softmax_phi_k_v], dim=dim)
            
            if past_log_sum_phi_k is not None:
                if random_feature_dim == 1:
                    dim = -2
                else:
                    dim = -3
                log_sum_phi_k = torch.cat([past_log_sum_phi_k, log_sum_phi_k], dim=dim)
            
            if past_rf_k_bar is not None:
                rf_k_bar = torch.cat([past_rf_k_bar, rf_k_bar], dim=-2)

            self.softmax_phi_k_v[layer_idx] = softmax_phi_k_v
            self.log_sum_phi_k[layer_idx] = log_sum_phi_k
            self.rf_k_bar[layer_idx] = rf_k_bar

        return softmax_phi_k_v, log_sum_phi_k, rf_k_bar

    def get_chunk_rfas(self, layer_idx):
        if len(self.softmax_phi_k_v) <= layer_idx:
            return (
                None, 
                None, 
                None
            )
        else:
            return (
                self.softmax_phi_k_v[layer_idx],
                self.log_sum_phi_k[layer_idx],
                self.rf_k_bar[layer_idx]
            ) 

    def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
        """Returns the sequence length of the cached states. A layer index can be optionally passed."""
        if len(self.w_k) <= layer_idx:
            return 0
        return self._seen_tokens

    def get_max_length(self) -> Optional[int]:
        """Returns the maximum sequence length of the cached states. DynamicCache does not have a maximum length."""
        return None

    def update(
        self,
        layer_idx: int,
        cache_kwargs: Optional[Dict[str, Any]] = None,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        raise NotImplementedError("`update` is not used in Eva Cache.")

class EvaStaticCacheForTriton(Cache):
    """
    A variant of EvaCache for eva's triton kernels
    """

    def __init__(
        self, 
        batch_size,
        num_key_value_heads,
        window_size,
        head_dim,
        num_layers,
        dtype,
        device
    ) -> None:
        self.past_window_k: List[torch.Tensor] = []
        self.past_window_v: List[torch.Tensor] = []

        cache_shape = (batch_size, num_key_value_heads, window_size, head_dim)
        for idx in range(num_layers):
            new_window_k = torch.zeros(cache_shape, dtype=dtype, device=device)
            new_window_v = torch.zeros(cache_shape, dtype=dtype, device=device)
            self.past_window_k.append(new_window_k)
            self.past_window_v.append(new_window_v)

        self.past_window_pos: List[int] = []

        self.rfa_k: List[torch.Tensor] = []
        self.rfa_v: List[torch.Tensor] = []
        # self.rfa_mask: List[torch.Tensor] = []

        self._seen_tokens = 0  # Used in `generate` to keep tally of how many tokens the cache has seen

        # attention masks temporary buffer
        self.rf_mask: List[Optional[torch.Tensor]] = []
        self.s_mask: List[torch.Tensor] = []

    def __len__(self):
        """
        Support for backwards-compatible `past_key_value` length, e.g. `len(past_key_value)`. This value corresponds
        to the number of layers in the model.
        """
        return len(self.past_window_pos)

    def get_usable_length(self, new_seq_length: int, layer_idx: Optional[int] = 0) -> int:
        """Given the sequence length of the new inputs, returns the usable length of the cache."""
        # Cache without size limit -> all cache is usable
        # Cache with size limit -> if the length cache plus the length of the new inputs is larger the maximum cache
        #   length, we will need to evict part of the cache (and thus not all cache is usable)
        max_length = self.get_max_length()
        previous_seq_length = self.get_seq_length(layer_idx)
        if max_length is not None and previous_seq_length + new_seq_length > max_length:
            return max_length - new_seq_length
        return previous_seq_length

    def reorder_cache(self, beam_idx: torch.LongTensor):
        """Reorders the cache for beam search, given the selected beam indices."""
        for layer_idx in range(len(self.past_window_k)):
            device = self.past_window_k[layer_idx].device
            self.past_window_k[layer_idx] = self.past_window_k[layer_idx].index_select(0, beam_idx.to(device))

            device = self.past_window_v[layer_idx].device
            self.past_window_v[layer_idx] = self.past_window_v[layer_idx].index_select(0, beam_idx.to(device))

            device = self.rfa_k[layer_idx].device
            self.rfa_k[layer_idx] = self.rfa_k[layer_idx].index_select(0, beam_idx.to(device))

            device = self.rfa_v[layer_idx].device
            self.rfa_v[layer_idx] = self.rfa_v[layer_idx].index_select(0, beam_idx.to(device))

            # device = self.rfa_mask[layer_idx].device
            # self.rfa_mask[layer_idx] = self.rfa_mask[layer_idx].index_select(0, beam_idx.to(device))

            device = self.rf_mask[layer_idx].device
            self.rf_mask[layer_idx] = self.rf_mask[layer_idx].index_select(0, beam_idx.to(device))

            device = self.s_mask[layer_idx].device
            self.s_mask[layer_idx] = self.s_mask[layer_idx].index_select(0, beam_idx.to(device))

    @property
    def seen_tokens(self):
        if hasattr(self, "_seen_tokens"):
            return self._seen_tokens
        else:
            return None

    def update_past_len(
        self,
        cur_q_len: int,
        layer_idx: int
    ):
        # Update the number of seen tokens
        if layer_idx == 0:
            self._seen_tokens += cur_q_len
        return self._seen_tokens

    def update_mask(
            self,
            s_mask,
            rf_mask,
            layer_idx,
            window_size,
    ):
        ############################################
        # compute masks for singletons
        ############################################
        if len(self.s_mask) <= layer_idx:
            # prefill stage
            # q is of shape [b, h, n, d]
            # s_v =  # [b, h, 1, j, d]
            # store the past window-wise key-value pairs
            if s_mask is None:
                cur_s_mask = None
            else:
                q_len = s_mask.shape[-2]
                # s_mask is of shape [b, h, n, w]
                # let r = q_len % window_size
                # if r == 0, the mask to be appended is of shape [b, h, 1, w]
                # otherwise, r < w, the mask to be appended is of shape [b, h, 1, r]
                remainder_tokens = q_len % window_size
                if remainder_tokens == 0:
                    cur_s_mask = None
                else:
                    cur_s_mask = s_mask[..., -1:, :remainder_tokens]
            self.s_mask.append(cur_s_mask)
            # we use the passed s_mask for subsequent computations
            dump_s_mask = s_mask
        else:
            # decoding stage
            past_s_mask = self.s_mask[layer_idx]
            if past_s_mask is None:
                assert s_mask is None
                cur_s_mask = None
            else:
                assert s_mask is not None
                cur_s_mask = torch.cat([past_s_mask, s_mask], dim=-1)
                
            dump_s_mask = cur_s_mask
            if cur_s_mask is not None and cur_s_mask.shape[-1] == window_size:
                cur_s_mask = None
                # store the past window-wise key-value pairs
            self.s_mask[layer_idx] = cur_s_mask

        ############################################
        # compute masks for intra-chunks
        ############################################
        dump_rf_mask = None
        if len(self.rf_mask) <= layer_idx:
            # initialize chunk stats
            # prefill stage
            if rf_mask is None:
                cur_rf_mask = None
            else:
                q_len = rf_mask.shape[-2]
                if q_len < window_size:
                    dump_rf_mask = None
                    cur_rf_mask = rf_mask
                else:
                    if q_len % window_size == 0:
                        dump_rf_mask = rf_mask
                        cur_rf_mask = None
                    else:
                        remainder_tokens = q_len % window_size
                        dump_rf_mask, cur_rf_mask = torch.split(rf_mask, [q_len - remainder_tokens, remainder_tokens], dim=-2)
            self.rf_mask.append(cur_rf_mask)
        else:
            past_rf_mask = self.rf_mask[layer_idx]
            if past_rf_mask is not None:
                # when decoding tokens, we always assume the 
                # incoming token mask is 0 (not masked)
                cur_rf_mask = torch.cat([past_rf_mask, rf_mask], dim=-2)
            else:
                cur_rf_mask = None
            
            if cur_rf_mask is not None and cur_rf_mask.shape[-2] == window_size:
                dump_rf_mask = cur_rf_mask
                cur_rf_mask = None

            self.rf_mask[layer_idx] = cur_rf_mask

        return dump_s_mask, dump_rf_mask

    def update_singletons_and_chunks(
            self,
            k,
            v,
            layer_idx,
            window_size,
    ):
        if len(self.past_window_pos) <= layer_idx:
            # prefill stage
            s_k = k
            s_v = v
            input_len = k.shape[-2]
            window_pos = 0
            if input_len <= window_size:
                new_window_pos = window_pos + input_len

                cached_window_k = k
                cached_window_v = v
                dump_k = None
                dump_v = None
            else:
                remainder_tokens = input_len % window_size
                if remainder_tokens == 0:
                    remainder_tokens = window_size
                new_window_pos = window_pos + remainder_tokens

                # [b, h, n-r, d] [b, h, r, d]
                cached_window_k = k[..., -remainder_tokens:, :]
                cached_window_v = v[..., -remainder_tokens:, :]
                dump_k = k[..., :-remainder_tokens, :]
                dump_v = v[..., :-remainder_tokens, :]
            # store the past window-wise key-value pairs
            self.past_window_k[layer_idx][:, :, window_pos : new_window_pos, :] = cached_window_k
            self.past_window_v[layer_idx][:, :, window_pos : new_window_pos, :] = cached_window_v
            self.past_window_pos.append(new_window_pos)
        else:
            # decoding stage
            # if the previous cache has full tokens,
            # roll back to the first elements
            if self.past_window_pos[layer_idx] == window_size:
                self.past_window_pos[layer_idx] = 0
                dump_k = self.past_window_k[layer_idx].clone()
                dump_v = self.past_window_v[layer_idx].clone()
            else:
                dump_k = None
                dump_v = None

            input_len = k.shape[-2]
            window_pos = self.past_window_pos[layer_idx]
            new_window_pos = window_pos + input_len

            self.past_window_k[layer_idx][:, :, window_pos : new_window_pos, :] = k
            self.past_window_v[layer_idx][:, :, window_pos : new_window_pos, :] = v

            s_k = self.past_window_k[layer_idx][:, :, : new_window_pos, :]
            s_v = self.past_window_v[layer_idx][:, :, : new_window_pos, :]

            self.past_window_pos[layer_idx] = new_window_pos

        return s_k, s_v, dump_k, dump_v

    def update_chunk_rfas(
        self,
        rfa_k,
        rfa_v,
        layer_idx,
    ):
        if len(self.rfa_k) <= layer_idx:
            # prefill stage
            self.rfa_k.append(rfa_k)
            self.rfa_v.append(rfa_v)
        else:
            # token decoding
            past_rfa_k = self.rfa_k[layer_idx]
            past_rfa_v = self.rfa_v[layer_idx]

            if past_rfa_k is not None:
                rfa_k = torch.cat([past_rfa_k, rfa_k], dim=-2)
            
            if past_rfa_v is not None:
                rfa_v = torch.cat([past_rfa_v, rfa_v], dim=-2)
            
            self.rfa_k[layer_idx] = rfa_k
            self.rfa_v[layer_idx] = rfa_v

        return rfa_k, rfa_v

    def get_past_window_pos(self, layer_idx):
        if len(self.past_window_pos) <= layer_idx:
            return None
        else:
            return self.past_window_pos[layer_idx]

    def get_past_window_kv(self, layer_idx):
        if len(self.past_window_pos) <= layer_idx:
            return None, None
        else:
            return (
                self.past_window_k[layer_idx][:, :, : self.past_window_pos[layer_idx], :], 
                self.past_window_v[layer_idx][:, :, : self.past_window_pos[layer_idx], :]
            )

    def get_chunk_rfas(self, layer_idx):
        if len(self.rfa_k) <= layer_idx:
            return None, None
        else:
            return self.rfa_k[layer_idx], self.rfa_v[layer_idx]

    def get_seq_length(self, layer_idx = 0) -> int:
        """Returns the sequence length of the cached states. A layer index can be optionally passed."""
        # layer_idx must be provided since otherwise
        # any layer > 0 can only get the updated _seen_tokens
        if len(self.past_window_pos) <= layer_idx:
            return 0
        return self._seen_tokens

    def get_max_length(self) -> Optional[int]:
        """Returns the maximum sequence length of the cached states. DynamicCache does not have a maximum length."""
        return None

    def update(
        self,
        layer_idx: int,
        cache_kwargs: Optional[Dict[str, Any]] = None,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        raise NotImplementedError("`update` is not used in Eva Cache.")