File size: 16,383 Bytes
474addc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470

import math
import torch
import triton
import triton.language as tl

# Disabling autotune for now, set num_warps=4 if headdim=64 and num_warps=8 if headdim=128
# @triton.autotune(
#     configs=[
#         triton.Config({"BLOCK_M": 128, "BLOCK_N": 128}, num_warps=4, num_stages=1),
#         # This config has a race condition when EVEN_M == False, disabling it for now.
#         # triton.Config({"BLOCK_M": 64, "BLOCK_N": 64}, num_warps=4, num_stages=1),
#     ],
#     key=['CACHE_KEY_SEQLEN_Q', 'CACHE_KEY_SEQLEN_K', 'BIAS_TYPE', 'IS_CAUSAL', 'BLOCK_HEADDIM']
# )
@triton.heuristics(
    {
        "EVEN_M": lambda args: args["seqlen_q"] % args["BLOCK_M"] == 0,
        "EVEN_N": lambda args: args["seqlen_k"] % args["BLOCK_N"] == 0,
        "EVEN_C": lambda args: args["nchunks"] % args["BLOCK_N"] == 0,
        "EVEN_W": lambda args: args["WINDOW_SIZE"] % args["BLOCK_N"] == 0,
        "EVEN_HEADDIM": lambda args: args["headdim"] == args["BLOCK_HEADDIM"],
    }
)
@triton.jit
def _fwd_eva_agg_kernel(
    Q,
    K,
    V,
    RFA_K,
    RFA_V,
    WindowMask,
    Out,
    softmax_scale,
    stride_qb, stride_qh, stride_qm,
    stride_kb, stride_kh, stride_kn,
    stride_vb, stride_vh, stride_vn,
    stride_rfa_kb, stride_rfa_kh, stride_rfa_kc,
    stride_rfa_vb, stride_rfa_vh, stride_rfa_vc,
    stride_mb, stride_mm,
    stride_ob, stride_oh, stride_om,
    nheads,
    seqlen_q,
    seqlen_k,
    nchunks,
    headdim,
    CACHE_KEY_SEQLEN_Q, # TODO: why keeping this
    CACHE_KEY_SEQLEN_K, # TODO: why keeping this
    CACHE_KEY_NCHUNKS, # TODO: why keeping this
    CHUNKS_PER_WINDOW: tl.constexpr,
    WINDOW_SIZE: tl.constexpr,
    MASK_TYPE: tl.constexpr,
    EMPTY_RFA_KV: tl.constexpr,
    BLOCK_HEADDIM: tl.constexpr,
    EVEN_M: tl.constexpr,
    EVEN_N: tl.constexpr,
    EVEN_W: tl.constexpr,
    EVEN_C: tl.constexpr,
    EVEN_HEADDIM: tl.constexpr,
    BLOCK_M: tl.constexpr,
    BLOCK_N: tl.constexpr,
):
    start_m = tl.program_id(0)
    off_bh = tl.program_id(1)
    off_h = off_bh % nheads
    off_b = off_bh // nheads
    # initialize offsets
    offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
    offs_w = (start_m * BLOCK_M) // WINDOW_SIZE
    offs_n = tl.arange(0, BLOCK_N)
    offs_c = tl.arange(0, BLOCK_N)
    offs_d = tl.arange(0, BLOCK_HEADDIM)
    # TODO: add paratheses or not
    q_ptrs = (
        Q +
        off_b * stride_qb +
        off_h * stride_qh +
        (offs_m[:, None] * stride_qm + offs_d[None, :])
    )
    k_ptrs = (
        K +
        off_b * stride_kb +
        off_h * stride_kh +
        (offs_n[:, None] * stride_kn + offs_d[None, :])
    )
    v_ptrs = (
        V +
        off_b * stride_vb +
        off_h * stride_vh +
        (offs_n[:, None] * stride_vn + offs_d[None, :])
    )
    if EMPTY_RFA_KV == 0:
        rfa_k_ptrs = (
            RFA_K +
            off_b * stride_rfa_kb +
            off_h * stride_rfa_kh +
            (offs_c[:, None] * stride_rfa_kc + offs_d[None, :])
        )
        rfa_v_ptrs = (
            RFA_V +
            off_b * stride_rfa_vb +
            off_h * stride_rfa_vh +
            (offs_c[:, None] * stride_rfa_vc + offs_d[None, :])
        )

    qk_scale = softmax_scale
    qk_scale *= 1.4426950408889634  # log2(e)
    if MASK_TYPE == 1:
        m_ptrs = (
            WindowMask +
            off_b * stride_mb +
            (offs_m[:, None] * stride_mm + offs_n[None, :])
        )
    m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf")
    d_i = tl.zeros([BLOCK_M], dtype=tl.float32)
    acc_o = tl.zeros([BLOCK_M, BLOCK_HEADDIM], dtype=tl.float32)
    # load q: it will stay in SRAM throughout
    # [2022-10-30] TD: Triton bug - in the case of EVEN_M=True and EVEN_N=False, if we just call
    # tl.load(q_ptrs), we get the wrong output!
    if EVEN_M & EVEN_N:
        if EVEN_HEADDIM:
            q = tl.load(
                q_ptrs
            )
        else:
            q = tl.load(
                q_ptrs,
                mask=offs_d[None, :] < headdim,
                other=0.0
            )
    else:
        if EVEN_HEADDIM:
            q = tl.load(
                q_ptrs,
                mask=offs_m[:, None] < seqlen_q,
                other=0.0
            )
        else:
            q = tl.load(
                q_ptrs,
                mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim),
                other=0.0
            )
    # loop over k, v and update accumulator
    # Iterate over local singletons;
    # so we only iterate over blocks within the current window
    start_idx_n = offs_w * WINDOW_SIZE
    end_idx_n = tl.minimum((start_m + 1) * BLOCK_M, seqlen_k)
    for start_n in range(start_idx_n, end_idx_n, BLOCK_N):
        start_n = tl.multiple_of(start_n, BLOCK_N)
        # -- compute qk ----
        if EVEN_N & EVEN_M:
            if EVEN_HEADDIM:
                k = tl.load(
                    k_ptrs + start_n * stride_kn
                )
            else:
                k = tl.load(
                    k_ptrs + start_n * stride_kn,
                    mask=offs_d[None, :] < headdim,
                    other=0.0
                )
        else:
            if EVEN_HEADDIM:
                k = tl.load(
                    k_ptrs + start_n * stride_kn,
                    mask=(start_n + offs_n)[:, None] < seqlen_k,
                    other=0.0,
                )
            else:
                k = tl.load(
                    k_ptrs + start_n * stride_kn,
                    mask=((start_n + offs_n)[:, None] < seqlen_k) & (offs_d[None, :] < headdim),
                    other=0.0,
                )
        qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
        qk += tl.dot(q, tl.trans(k))
        # Trying to combine the two masks seem to make the result wrong
        if not EVEN_N:  # Need to mask out otherwise the softmax is wrong
            qk += tl.where((start_n + offs_n)[None, :] < seqlen_k, 0, float("-inf"))

        if MASK_TYPE == 1:
            if EVEN_M & EVEN_W:
                mask = tl.load(
                    m_ptrs + start_n - start_idx_n
                ).to(tl.float32)
            else:
                mask = tl.load(
                    m_ptrs + start_n - start_idx_n,
                    mask=(offs_m[:, None] < seqlen_q)
                    & ((start_n - start_idx_n + offs_n)[None, :] < WINDOW_SIZE),
                    other=0.0,
                ).to(tl.float32)
            # Slightly faster to multiply the softmax_scale in the tl.exp below since the compiler
            # can then fuse the mult and add into an fma instruction. But if we have bias we need to
            # to multiply with softmax_scale here.
            # we assume mask already implies the causal masking
            qk = qk * qk_scale + mask
            m_ij = tl.maximum(tl.max(qk, 1), m_i)
            p = tl.exp2(qk - m_ij[:, None])
        else:
            qk += tl.where(offs_m[:, None] >= (start_n + offs_n)[None, :], 0, float("-inf"))
            m_ij = tl.maximum(tl.max(qk, 1) * qk_scale, m_i)
            p = tl.exp2(qk * qk_scale - m_ij[:, None])

        d_ij = tl.sum(p, 1)

        # scale acc_o
        prev_scale = tl.exp2(m_i - m_ij)
        # # -- update output accumulator --
        acc_o = acc_o * prev_scale[:, None]
        # update acc_o
        if EVEN_N & EVEN_M:  # If we just do "if EVEN_N", there seems to be some race condition
            if EVEN_HEADDIM:
                v = tl.load(
                    v_ptrs + start_n * stride_vn
                )
            else:
                v = tl.load(
                    v_ptrs + start_n * stride_vn,
                    mask=offs_d[None, :] < headdim,
                    other=0.0
                )
        else:
            if EVEN_HEADDIM:
                v = tl.load(
                    v_ptrs + start_n * stride_vn,
                    mask=(start_n + offs_n)[:, None] < seqlen_k,
                    other=0.0,
                )
            else:
                v = tl.load(
                    v_ptrs + start_n * stride_vn,
                    mask=((start_n + offs_n)[:, None] < seqlen_k) & (offs_d[None, :] < headdim),
                    other=0.0,
                )
        p = p.to(v.dtype)
        acc_o = tl.dot(p, v, acc_o)

        # -- update statistics
        d_i = d_i * prev_scale + d_ij
        m_i = m_ij

    if EMPTY_RFA_KV == 0:
        # Iterate over RFA chunks
        # we only iterate over chunks before the current local singleton window
        end_idx_c = tl.minimum(offs_w * CHUNKS_PER_WINDOW, nchunks)
        for start_c in range(0, end_idx_c, BLOCK_N):
            start_c = tl.multiple_of(start_c, BLOCK_N)
            # -- compute qk ----
            if EVEN_C & EVEN_M:
                if EVEN_HEADDIM:
                    rfa_k = tl.load(
                        rfa_k_ptrs + start_c * stride_rfa_kc
                    )
                else:
                    rfa_k = tl.load(
                        rfa_k_ptrs + start_c * stride_rfa_kc,
                        mask=offs_d[None, :] < headdim,
                        other=0.0
                    )
            else:
                if EVEN_HEADDIM:
                    rfa_k = tl.load(
                        rfa_k_ptrs + start_c * stride_rfa_kc,
                        mask=(start_c + offs_c)[:, None] < nchunks,
                        other=0.0,
                    )
                else:
                    rfa_k = tl.load(
                        rfa_k_ptrs + start_c * stride_rfa_kc,
                        mask=((start_c + offs_c)[:, None] < nchunks) & (offs_d[None, :] < headdim),
                        other=0.0,
                    )
            qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
            qk += tl.dot(q, tl.trans(rfa_k))
            # Trying to combine the two masks seem to make the result wrong
            if not EVEN_C:  # Need to mask out otherwise the softmax is wrong
                qk += tl.where((start_c + offs_c)[None, :] < nchunks, 0, float("-inf"))

            m_ij = tl.maximum(tl.max(qk, 1) * qk_scale, m_i)
            p = tl.exp2(qk * qk_scale - m_ij[:, None])

            d_ij = tl.sum(p, 1)

            # scale acc_o
            prev_scale = tl.exp2(m_i - m_ij)
            # # -- update output accumulator --
            acc_o = acc_o * prev_scale[:, None]
            # update acc_o
            # TODO: If we just do "if EVEN_N", there seems to be some race condition ?
            if EVEN_C & EVEN_M:  
                if EVEN_HEADDIM:
                    rfa_v = tl.load(
                        rfa_v_ptrs + start_c * stride_rfa_vc
                    )
                else:
                    rfa_v = tl.load(
                        rfa_v_ptrs + start_c * stride_rfa_vc,
                        mask=offs_d[None, :] < headdim,
                        other=0.0
                    )
            else:
                if EVEN_HEADDIM:
                    rfa_v = tl.load(
                        rfa_v_ptrs + start_c * stride_rfa_vc,
                        mask=(start_c + offs_n)[:, None] < nchunks,
                        other=0.0,
                    )
                else:
                    rfa_v = tl.load(
                        rfa_v_ptrs + start_c * stride_rfa_vc,
                        mask=((start_c + offs_n)[:, None] < nchunks) & (offs_d[None, :] < headdim),
                        other=0.0,
                    )
            p = p.to(rfa_v.dtype)
            acc_o = tl.dot(p, rfa_v, acc_o)

            # -- update statistics
            d_i = d_i * prev_scale + d_ij
            m_i = m_ij

    # BUG: have to store and immediately load
    acc_o = acc_o / d_i[:, None]
    # TODO: understand why rematerialize offsets to save registers?
    start_m = tl.program_id(0)
    offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
    offs_d = tl.arange(0, BLOCK_HEADDIM)
    out_ptrs = (
        Out +
        off_b * stride_ob +
        off_h * stride_oh +
        (offs_m[:, None] * stride_om + offs_d[None, :])
    )
    if EVEN_M:
        if EVEN_HEADDIM:
            tl.store(
                out_ptrs, acc_o
            )
        else:
            tl.store(
                out_ptrs, acc_o,
                mask=offs_d[None, :] < headdim
            )
    else:
        if EVEN_HEADDIM:
            tl.store(
                out_ptrs, acc_o,
                mask=offs_m[:, None] < seqlen_q
            )
        else:
            tl.store(
                out_ptrs, acc_o,
                mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim)
            )

def triton_eva_agg_fwd(q, k, v, rfa_k, rfa_v, window_mask, softmax_scale, window_size, chunks_per_window):
    if rfa_k is None and rfa_v is None:
        empty_rfa_kv = 1

        q, k, v = [
            x if x.stride(-1) == 1 else x.contiguous() 
            for x in [q, k, v]
        ]
    else:
        assert rfa_k is not None and rfa_v is not None, "Both rfa_k and rfa_v must either be None or have values at the same time."
        empty_rfa_kv = 0

        q, k, v, rfa_k, rfa_v = [
            x if x.stride(-1) == 1 else x.contiguous() 
            for x in [q, k, v, rfa_k, rfa_v]
        ]

    # shape constraints
    batch, nheads, seqlen_q, head_dim = q.shape
    _,     _,      seqlen_k, _        = k.shape
    if empty_rfa_kv == 0:
        nchunks = rfa_k.shape[-2]
        assert rfa_k.shape == (batch, nheads, nchunks, head_dim)
        assert rfa_v.shape == (batch, nheads, nchunks, head_dim)
        assert q.dtype == k.dtype == v.dtype == rfa_k.dtype == rfa_v.dtype
    else:
        nchunks = 0
        assert q.dtype == k.dtype == v.dtype, "All tensors must have the same type"
    assert k.shape == (batch, nheads, seqlen_k, head_dim)
    assert v.shape == (batch, nheads, seqlen_k, head_dim)

    assert head_dim <= 128, "We only test head dimensions up to 128"
    # assert q.dtype in [torch.float16, torch.bfloat16], "Only support fp16 and bf16"
    assert q.dtype in [torch.bfloat16, torch.float], "Only support bf16 and fp32 for now"
    assert q.is_cuda and k.is_cuda and v.is_cuda
    softmax_scale = softmax_scale or 1.0 / math.sqrt(head_dim)

    mask_type = 0
    if window_mask is not None:
        mask_type = 1
        assert window_mask.dtype == q.dtype, torch.float
        assert window_mask.is_cuda
        assert window_mask.dim() == 4
        assert window_mask.shape == (batch, 1, seqlen_q, window_size)
        if window_mask.stride(-1) != 1:
            window_mask = window_mask.contiguous()
    mask_strides = (
        (window_mask.stride(0), window_mask.stride(2)) 
        if mask_type == 1 else 
        (0, 0)
    )

    rfa_k_strides = (
        (rfa_k.stride(0), rfa_k.stride(1), rfa_k.stride(2))
        if empty_rfa_kv == 0 else
        (0, 0, 0)
    )
    rfa_v_strides = (
        (rfa_v.stride(0), rfa_v.stride(1), rfa_v.stride(2))
        if empty_rfa_kv == 0 else
        (0, 0, 0)
    )
    assert chunks_per_window > 0, "chunks_per_window must be greater than 0"

    o = torch.empty_like(q)

    BLOCK_HEADDIM = max(triton.next_power_of_2(head_dim), 16)
    if q.dtype == torch.float:
        BLOCK = 64
    else:
        BLOCK = 128
    num_warps = 4 if head_dim <= 64 else 8
    assert chunks_per_window >= BLOCK, "chunks_per_window must be greater than BLOCK" 
    # WINDOW_MASK_TYPE:
    # - 0: regular causal mask, simply None
    # - 1: the shape must be B, 1, W, I, J

    grid = lambda META: (triton.cdiv(seqlen_q, META["BLOCK_M"]), batch * nheads)
    _fwd_eva_agg_kernel[grid](
        q,
        k,
        v,
        rfa_k,
        rfa_v,
        window_mask,
        o,
        softmax_scale,
        q.stride(0), q.stride(1), q.stride(2),
        k.stride(0), k.stride(1), k.stride(2),
        v.stride(0), v.stride(1), v.stride(2),
        rfa_k_strides[0], rfa_k_strides[1], rfa_k_strides[2],
        rfa_v_strides[0], rfa_v_strides[1], rfa_v_strides[2],
        mask_strides[0], mask_strides[1],
        o.stride(0), o.stride(1), o.stride(2),
        nheads,
        seqlen_q,
        seqlen_k,
        nchunks,
        head_dim,
        seqlen_q // 32,
        seqlen_k // 32,
        nchunks // 32,
        chunks_per_window,
        window_size,
        mask_type,
        empty_rfa_kv,
        BLOCK_HEADDIM,
        BLOCK_M=BLOCK,
        BLOCK_N=BLOCK,
        num_warps=num_warps,
        num_stages=1,
    )
    return o