metadata
license: other
base_model: apple/mobilevitv2-1.0-imagenet1k-256
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- f1
- accuracy
model-index:
- name: car_identified_model_7
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: F1
type: f1
value: 0.3628691983122363
- name: Accuracy
type: accuracy
value: 0.07142857142857142
car_identified_model_7
This model is a fine-tuned version of apple/mobilevitv2-1.0-imagenet1k-256 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.5755
- F1: 0.3629
- Roc Auc: 0.6990
- Accuracy: 0.0714
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 200
Training results
Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy |
---|---|---|---|---|---|---|
0.6919 | 0.73 | 1 | 0.6887 | 0.1786 | 0.5738 | 0.0 |
0.6919 | 1.45 | 2 | 0.6856 | 0.1818 | 0.5761 | 0.0 |
0.6919 | 2.91 | 4 | 0.6802 | 0.2116 | 0.6066 | 0.0 |
0.6919 | 3.64 | 5 | 0.6800 | 0.1861 | 0.5826 | 0.0 |
0.6919 | 4.36 | 6 | 0.6858 | 0.1905 | 0.5973 | 0.0 |
0.6919 | 5.82 | 8 | 0.6938 | 0.1549 | 0.5342 | 0.0 |
0.6919 | 6.55 | 9 | 0.6917 | 0.1805 | 0.5802 | 0.0 |
0.6919 | 8.0 | 11 | 0.6735 | 0.1905 | 0.5932 | 0.0 |
0.6919 | 8.73 | 12 | 0.6727 | 0.1952 | 0.6007 | 0.0 |
0.6919 | 9.45 | 13 | 0.6698 | 0.2061 | 0.6172 | 0.0 |
0.6919 | 10.91 | 15 | 0.6672 | 0.2008 | 0.6092 | 0.0 |
0.6919 | 11.64 | 16 | 0.6645 | 0.2092 | 0.6196 | 0.0 |
0.6919 | 12.36 | 17 | 0.6646 | 0.2049 | 0.6144 | 0.0 |
0.6919 | 13.82 | 19 | 0.6623 | 0.2081 | 0.6167 | 0.0 |
0.6919 | 14.55 | 20 | 0.6607 | 0.2078 | 0.6149 | 0.0 |
0.6919 | 16.0 | 22 | 0.6585 | 0.2203 | 0.6320 | 0.0 |
0.6919 | 16.73 | 23 | 0.6562 | 0.2156 | 0.6219 | 0.0 |
0.6919 | 17.45 | 24 | 0.6555 | 0.2182 | 0.6263 | 0.0 |
0.6919 | 18.91 | 26 | 0.6522 | 0.2185 | 0.6232 | 0.0 |
0.6919 | 19.64 | 27 | 0.6512 | 0.2228 | 0.6273 | 0.0 |
0.6919 | 20.36 | 28 | 0.6501 | 0.2356 | 0.6410 | 0.0 |
0.6919 | 21.82 | 30 | 0.6477 | 0.2280 | 0.6284 | 0.0 |
0.6919 | 22.55 | 31 | 0.6476 | 0.2326 | 0.6343 | 0.0 |
0.6919 | 24.0 | 33 | 0.6469 | 0.2408 | 0.6434 | 0.0 |
0.6919 | 24.73 | 34 | 0.6432 | 0.2409 | 0.6369 | 0.0 |
0.6919 | 25.45 | 35 | 0.6432 | 0.2431 | 0.6408 | 0.0 |
0.6919 | 26.91 | 37 | 0.6402 | 0.2486 | 0.6449 | 0.0 |
0.6919 | 27.64 | 38 | 0.6386 | 0.2686 | 0.6664 | 0.0 |
0.6919 | 28.36 | 39 | 0.6376 | 0.2762 | 0.6796 | 0.0 |
0.6919 | 29.82 | 41 | 0.6347 | 0.2692 | 0.6721 | 0.0 |
0.6919 | 30.55 | 42 | 0.6339 | 0.2655 | 0.6643 | 0.0 |
0.6919 | 32.0 | 44 | 0.6310 | 0.2674 | 0.6630 | 0.0 |
0.6919 | 32.73 | 45 | 0.6307 | 0.2789 | 0.6731 | 0.0 |
0.6919 | 33.45 | 46 | 0.6291 | 0.2714 | 0.6656 | 0.0 |
0.6919 | 34.91 | 48 | 0.6271 | 0.2761 | 0.6659 | 0.0 |
0.6919 | 35.64 | 49 | 0.6271 | 0.2687 | 0.6612 | 0.0 |
0.6919 | 36.36 | 50 | 0.6277 | 0.2606 | 0.6509 | 0.0 |
0.6919 | 37.82 | 52 | 0.6257 | 0.2741 | 0.6620 | 0.0 |
0.6919 | 38.55 | 53 | 0.6244 | 0.2892 | 0.6793 | 0.0 |
0.6919 | 40.0 | 55 | 0.6203 | 0.2968 | 0.6806 | 0.0 |
0.6919 | 40.73 | 56 | 0.6198 | 0.2902 | 0.6770 | 0.0 |
0.6919 | 41.45 | 57 | 0.6184 | 0.3023 | 0.6866 | 0.0 |
0.6919 | 42.91 | 59 | 0.6163 | 0.2977 | 0.6812 | 0.0 |
0.6919 | 43.64 | 60 | 0.6147 | 0.3322 | 0.7112 | 0.0 |
0.6919 | 44.36 | 61 | 0.6154 | 0.3197 | 0.6954 | 0.0 |
0.6919 | 45.82 | 63 | 0.6129 | 0.3016 | 0.6832 | 0.0 |
0.6919 | 46.55 | 64 | 0.6112 | 0.3020 | 0.6804 | 0.0 |
0.6919 | 48.0 | 66 | 0.6095 | 0.2961 | 0.6773 | 0.0 |
0.6919 | 48.73 | 67 | 0.6091 | 0.3133 | 0.6923 | 0.0 |
0.6919 | 49.45 | 68 | 0.6090 | 0.3265 | 0.7019 | 0.0 |
0.6919 | 50.91 | 70 | 0.6077 | 0.3093 | 0.6840 | 0.0 |
0.6919 | 51.64 | 71 | 0.6065 | 0.3239 | 0.6941 | 0.0 |
0.6919 | 52.36 | 72 | 0.6058 | 0.3237 | 0.6907 | 0.0 |
0.6919 | 53.82 | 74 | 0.6028 | 0.3285 | 0.6928 | 0.0 |
0.6919 | 54.55 | 75 | 0.6038 | 0.3285 | 0.6928 | 0.0238 |
0.6919 | 56.0 | 77 | 0.6056 | 0.3197 | 0.6825 | 0.0 |
0.6919 | 56.73 | 78 | 0.6074 | 0.3249 | 0.6913 | 0.0 |
0.6919 | 57.45 | 79 | 0.6030 | 0.3158 | 0.6775 | 0.0238 |
0.6919 | 58.91 | 81 | 0.6001 | 0.3359 | 0.6925 | 0.0238 |
0.6919 | 59.64 | 82 | 0.5993 | 0.3409 | 0.6980 | 0.0238 |
0.6919 | 60.36 | 83 | 0.6017 | 0.3259 | 0.6884 | 0.0238 |
0.6919 | 61.82 | 85 | 0.6009 | 0.3146 | 0.6770 | 0.0238 |
0.6919 | 62.55 | 86 | 0.6018 | 0.3197 | 0.6825 | 0.0238 |
0.6919 | 64.0 | 88 | 0.5975 | 0.3130 | 0.6731 | 0.0238 |
0.6919 | 64.73 | 89 | 0.5978 | 0.3271 | 0.6889 | 0.0238 |
0.6919 | 65.45 | 90 | 0.5967 | 0.3424 | 0.6951 | 0.0238 |
0.6919 | 66.91 | 92 | 0.5973 | 0.3125 | 0.6698 | 0.0238 |
0.6919 | 67.64 | 93 | 0.5956 | 0.3372 | 0.6931 | 0.0238 |
0.6919 | 68.36 | 94 | 0.5922 | 0.3373 | 0.6897 | 0.0238 |
0.6919 | 69.82 | 96 | 0.5949 | 0.3320 | 0.6843 | 0.0476 |
0.6919 | 70.55 | 97 | 0.5959 | 0.3413 | 0.6913 | 0.0476 |
0.6919 | 72.0 | 99 | 0.5944 | 0.3420 | 0.7019 | 0.0238 |
0.6919 | 72.73 | 100 | 0.5955 | 0.3333 | 0.6881 | 0.0476 |
0.6919 | 73.45 | 101 | 0.5933 | 0.3346 | 0.6887 | 0.0238 |
0.6919 | 74.91 | 103 | 0.5894 | 0.3543 | 0.7032 | 0.0238 |
0.6919 | 75.64 | 104 | 0.5903 | 0.3424 | 0.6951 | 0.0238 |
0.6919 | 76.36 | 105 | 0.5890 | 0.3411 | 0.6946 | 0.0476 |
0.6919 | 77.82 | 107 | 0.5922 | 0.3346 | 0.6887 | 0.0476 |
0.6919 | 78.55 | 108 | 0.5923 | 0.3243 | 0.6812 | 0.0476 |
0.6919 | 80.0 | 110 | 0.5908 | 0.3468 | 0.6933 | 0.0476 |
0.6919 | 80.73 | 111 | 0.5922 | 0.328 | 0.6793 | 0.0476 |
0.6919 | 81.45 | 112 | 0.5892 | 0.3440 | 0.6923 | 0.0238 |
0.6919 | 82.91 | 114 | 0.5880 | 0.3506 | 0.6982 | 0.0238 |
0.6919 | 83.64 | 115 | 0.5869 | 0.3454 | 0.6928 | 0.0476 |
0.6919 | 84.36 | 116 | 0.5841 | 0.3465 | 0.6967 | 0.0238 |
0.6919 | 85.82 | 118 | 0.5841 | 0.3568 | 0.6969 | 0.0714 |
0.6919 | 86.55 | 119 | 0.5843 | 0.3496 | 0.6944 | 0.0476 |
0.6919 | 88.0 | 121 | 0.5860 | 0.3598 | 0.6980 | 0.0476 |
0.6919 | 88.73 | 122 | 0.5837 | 0.3457 | 0.6894 | 0.0476 |
0.6919 | 89.45 | 123 | 0.5826 | 0.3636 | 0.7029 | 0.0714 |
0.6919 | 90.91 | 125 | 0.5822 | 0.3651 | 0.7034 | 0.0714 |
0.6919 | 91.64 | 126 | 0.5814 | 0.3607 | 0.7019 | 0.0714 |
0.6919 | 92.36 | 127 | 0.5814 | 0.3629 | 0.7063 | 0.0476 |
0.6919 | 93.82 | 129 | 0.5818 | 0.3713 | 0.7055 | 0.0714 |
0.6919 | 94.55 | 130 | 0.5802 | 0.3766 | 0.7109 | 0.0714 |
0.6919 | 96.0 | 132 | 0.5803 | 0.3675 | 0.7006 | 0.0714 |
0.6919 | 96.73 | 133 | 0.5825 | 0.3519 | 0.6881 | 0.0714 |
0.6919 | 97.45 | 134 | 0.5790 | 0.3629 | 0.6990 | 0.0714 |
0.6919 | 98.91 | 136 | 0.5795 | 0.3766 | 0.7109 | 0.0714 |
0.6919 | 99.64 | 137 | 0.5784 | 0.3697 | 0.7050 | 0.0714 |
0.6919 | 100.36 | 138 | 0.5819 | 0.3583 | 0.6975 | 0.0714 |
0.6919 | 101.82 | 140 | 0.5834 | 0.3525 | 0.6954 | 0.0476 |
0.6919 | 102.55 | 141 | 0.5825 | 0.3689 | 0.7083 | 0.0238 |
0.6919 | 104.0 | 143 | 0.5839 | 0.3460 | 0.6861 | 0.0714 |
0.6919 | 104.73 | 144 | 0.5838 | 0.3333 | 0.6814 | 0.0476 |
0.6919 | 105.45 | 145 | 0.5801 | 0.3387 | 0.6869 | 0.0238 |
0.6919 | 106.91 | 147 | 0.5811 | 0.3515 | 0.6915 | 0.0476 |
0.6919 | 107.64 | 148 | 0.5793 | 0.3374 | 0.6830 | 0.0476 |
0.6919 | 108.36 | 149 | 0.5766 | 0.3448 | 0.6822 | 0.0714 |
0.6919 | 109.82 | 151 | 0.5760 | 0.3445 | 0.6856 | 0.0714 |
0.6919 | 110.55 | 152 | 0.5757 | 0.3559 | 0.6931 | 0.0714 |
0.6919 | 112.0 | 154 | 0.5760 | 0.3475 | 0.6866 | 0.0714 |
0.6919 | 112.73 | 155 | 0.5743 | 0.3629 | 0.6990 | 0.0714 |
0.6919 | 113.45 | 156 | 0.5732 | 0.3636 | 0.7029 | 0.0714 |
0.6919 | 114.91 | 158 | 0.5736 | 0.3786 | 0.7153 | 0.0476 |
0.6919 | 115.64 | 159 | 0.5764 | 0.3667 | 0.7039 | 0.0238 |
0.6919 | 116.36 | 160 | 0.5765 | 0.3613 | 0.6985 | 0.0476 |
0.6919 | 117.82 | 162 | 0.5749 | 0.3574 | 0.6936 | 0.0714 |
0.6919 | 118.55 | 163 | 0.5754 | 0.3592 | 0.7013 | 0.0476 |
0.6919 | 120.0 | 165 | 0.5757 | 0.3665 | 0.7112 | 0.0476 |
0.6919 | 120.73 | 166 | 0.5771 | 0.3729 | 0.7060 | 0.0714 |
0.6919 | 121.45 | 167 | 0.5746 | 0.3629 | 0.6990 | 0.0714 |
0.6919 | 122.91 | 169 | 0.5758 | 0.3644 | 0.6995 | 0.0714 |
0.6919 | 123.64 | 170 | 0.5745 | 0.3559 | 0.6931 | 0.0714 |
0.6919 | 124.36 | 171 | 0.5758 | 0.3544 | 0.6925 | 0.0714 |
0.6919 | 125.82 | 173 | 0.5759 | 0.3598 | 0.6980 | 0.0714 |
0.6919 | 126.55 | 174 | 0.5772 | 0.3568 | 0.6969 | 0.0714 |
0.6919 | 128.0 | 176 | 0.5747 | 0.3583 | 0.6975 | 0.0714 |
0.6919 | 128.73 | 177 | 0.5738 | 0.3644 | 0.6995 | 0.0714 |
0.6919 | 129.45 | 178 | 0.5751 | 0.3644 | 0.6995 | 0.0714 |
0.6919 | 130.91 | 180 | 0.5741 | 0.3713 | 0.7055 | 0.0952 |
0.6919 | 131.64 | 181 | 0.5748 | 0.3713 | 0.7055 | 0.0952 |
0.6919 | 132.36 | 182 | 0.5767 | 0.3660 | 0.7001 | 0.0714 |
0.6919 | 133.82 | 184 | 0.5732 | 0.3660 | 0.7001 | 0.0952 |
0.6919 | 134.55 | 185 | 0.5742 | 0.3772 | 0.7037 | 0.0952 |
0.6919 | 136.0 | 187 | 0.5690 | 0.3755 | 0.7032 | 0.0952 |
0.6919 | 136.73 | 188 | 0.5699 | 0.3805 | 0.7047 | 0.0714 |
0.6919 | 137.45 | 189 | 0.5743 | 0.3707 | 0.7016 | 0.0714 |
0.6919 | 138.91 | 191 | 0.5740 | 0.3529 | 0.6920 | 0.0952 |
0.6919 | 139.64 | 192 | 0.5740 | 0.3660 | 0.7001 | 0.0714 |
0.6919 | 140.36 | 193 | 0.5734 | 0.3644 | 0.6995 | 0.0714 |
0.6919 | 141.82 | 195 | 0.5740 | 0.3675 | 0.7006 | 0.0714 |
0.6919 | 142.55 | 196 | 0.5721 | 0.3707 | 0.7016 | 0.0714 |
0.6919 | 144.0 | 198 | 0.5725 | 0.3767 | 0.6998 | 0.0714 |
0.6919 | 144.73 | 199 | 0.5734 | 0.3729 | 0.7060 | 0.0952 |
0.6919 | 145.45 | 200 | 0.5755 | 0.3629 | 0.6990 | 0.0714 |
Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu121
- Datasets 2.14.6
- Tokenizers 0.14.1