EstherSan's picture
Model save
426310d
metadata
license: other
base_model: apple/mobilevit-small
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - f1
  - accuracy
model-index:
  - name: car_identified_model_11
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: F1
            type: f1
            value: 0.7241379310344829
          - name: Accuracy
            type: accuracy
            value: 0.08333333333333333

car_identified_model_11

This model is a fine-tuned version of apple/mobilevit-small on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6686
  • F1: 0.7241
  • Roc Auc: 0.6667
  • Accuracy: 0.0833

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss F1 Roc Auc Accuracy
0.2582 1.0 1 0.6938 0.5926 0.5417 0.0833
0.2582 2.0 2 0.6937 0.6415 0.6042 0.0833
0.2582 3.0 4 0.6918 0.6429 0.5833 0.0
0.2582 4.0 5 0.6893 0.6316 0.5625 0.0
0.2582 5.0 6 0.6871 0.6667 0.6042 0.0833
0.2582 6.0 8 0.6844 0.6786 0.625 0.0833
0.2582 7.0 9 0.6827 0.7018 0.6458 0.0833
0.2582 8.0 10 0.6817 0.6667 0.6042 0.0833
0.2582 9.0 11 0.6809 0.6897 0.625 0.0833
0.2582 10.0 12 0.6804 0.6897 0.625 0.0833
0.2582 11.0 14 0.6792 0.6897 0.625 0.0833
0.2582 12.0 15 0.6787 0.7119 0.6458 0.0833
0.2582 13.0 16 0.6780 0.7119 0.6458 0.0833
0.2582 14.0 18 0.6771 0.7241 0.6667 0.0833
0.2582 15.0 19 0.6765 0.7241 0.6667 0.0833
0.2582 16.0 20 0.6762 0.7458 0.6875 0.0833
0.2582 17.0 21 0.6758 0.7333 0.6667 0.0833
0.2582 18.0 22 0.6753 0.7458 0.6875 0.0833
0.2582 19.0 24 0.6744 0.7333 0.6667 0.0833
0.2582 20.0 25 0.6740 0.7241 0.6667 0.0833
0.2582 21.0 26 0.6737 0.7241 0.6667 0.0833
0.2582 22.0 28 0.6733 0.7458 0.6875 0.0833
0.2582 23.0 29 0.6725 0.7458 0.6875 0.0833
0.2582 24.0 30 0.6720 0.7368 0.6875 0.0833
0.2582 25.0 31 0.6719 0.7241 0.6667 0.0833
0.2582 26.0 32 0.6713 0.7241 0.6667 0.0833
0.2582 27.0 34 0.6711 0.7241 0.6667 0.0833
0.2582 28.0 35 0.6705 0.7241 0.6667 0.0833
0.2582 29.0 36 0.6700 0.7368 0.6875 0.0833
0.2582 30.0 38 0.6696 0.7241 0.6667 0.0833
0.2582 31.0 39 0.6695 0.7241 0.6667 0.0833
0.2582 32.0 40 0.6693 0.7368 0.6875 0.1667
0.2582 33.0 41 0.6692 0.7241 0.6667 0.0833
0.2582 34.0 42 0.6694 0.7241 0.6667 0.0833
0.2582 35.0 44 0.6692 0.7241 0.6667 0.0833
0.2582 36.0 45 0.6693 0.7241 0.6667 0.0833
0.2582 37.0 46 0.6693 0.7241 0.6667 0.0833
0.2582 38.0 48 0.6690 0.7241 0.6667 0.0833
0.2582 39.0 49 0.6689 0.7368 0.6875 0.0833
0.2582 40.0 50 0.6686 0.7241 0.6667 0.0833

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu121
  • Datasets 2.14.6
  • Tokenizers 0.14.1