{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a9149f637f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a9149f63880>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a9149f63910>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a9149f639a0>", "_build": "<function ActorCriticPolicy._build at 0x7a9149f63a30>", "forward": "<function ActorCriticPolicy.forward at 0x7a9149f63ac0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a9149f63b50>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a9149f63be0>", "_predict": "<function ActorCriticPolicy._predict at 0x7a9149f63c70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a9149f63d00>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a9149f63d90>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a9149f63e20>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a90eb94bb40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1733322383302775088, "learning_rate": 0.0003, "tensorboard_log": "./ppo_tensorboard/", "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAICifL1EXco+DL2FPd/+sL7UzEg8xeFJvAAAAAAAAAAAgD9NPX/auT/Grxg/e8QKPvXoTrzuK8M9AAAAAAAAAACdQOo+HCnQvf6WiDzWX1O7hp6Yvg1mtboAAIA/AACAPzO3BzyP8nU/Wg4Dvdyo+L6mTz68KnALvQAAAAAAAAAAM6pkPoHF+rxQkis9Ucivu2ysXb6aEYW8AACAPwAAgD/AntE+Nu4fPVvxs71qVim81uVUPt7lzbwAAIA/AACAPxoNqL7wto29eMf9vCvlBb43AIU+FlVePQAAgD8AAIA/miQZPntSvbraGYyw0NaEscyWzLq2lFKyAACAPwAAgD82ctA+I2ETPZRYOr3vIWa+qZ0FPQivgLoAAAAAAAAAACZP8r0fHc65d98vPdToMT11HR+6m1gnPgAAgD8AAIA/LRB7Pp3sCr1rS+M6ikWFuSnzc74lnxW6AACAPwAAgD8AYoE+H93nPCOd7zr7NKU5II94PsJ0KroAAIA/AACAP7Nadr6T+3U/Z66EvgayAr8GwUW+QtpUPQAAAAAAAAAAHVChPhy1Vj3LOKo79ZIAOhNTiz71YfO6AACAPwAAgD+af748Pz21P+f7RT/x/UI9AEKvvFUX2L0AAAAAAAAAAOb4LL5vcQM9I2EaPqtkN74V0Xs810o1PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVAgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQDlO9eyAxzuMAWyUS7uMAXSUR0CX3/bSZ0CBdX2UKGgGR0BuUyrT6SDAaAdL1mgIR0CX4NahpQDWdX2UKGgGR0BuCPzasZHeaAdNQwFoCEdAl+JEP+XJHXV9lChoBkdAXYhXaJyhjGgHTegDaAhHQJfjHSlWOp91fZQoaAZHQG+WjUExIrhoB0vdaAhHQJfjfdi2Dxt1fZQoaAZHQFqLnv2GqPxoB03oA2gIR0CX46rfcer/dX2UKGgGR0Az0JKraM72aAdLsGgIR0CX47nHNorXdX2UKGgGR0BxX22PT5O8aAdL5WgIR0CX5F8zAN5MdX2UKGgGR0BruK8Djin6aAdNfgFoCEdAl+SHbVSXMXV9lChoBkdAbQj69kBjnWgHTRUBaAhHQJfkwEjgQ6J1fZQoaAZHQG2hZpSJj2BoB00MAWgIR0CX5g9s7+1jdX2UKGgGR0Bw/Wd+XqqwaAdL12gIR0CX5p7aqS5idX2UKGgGR0BuGLmlqJuVaAdL4GgIR0CX52/z8P4EdX2UKGgGR0BgO27OE/SqaAdN6ANoCEdAl+eR8hLXc3V9lChoBkdAbtsD6FdszmgHTQEBaAhHQJfpXxAjY7J1fZQoaAZHQHCVMabWmP5oB0v5aAhHQJfpv0J4SpR1fZQoaAZHQEBeTN+so2JoB0vWaAhHQJfqrH2h7E51fZQoaAZHQG95P7vXsgNoB0vfaAhHQJfrDodMj/x1fZQoaAZHQHBoyx/ustFoB0v4aAhHQJfryzqrzXl1fZQoaAZHQHAVymIj4YdoB00CAWgIR0CX6+Mj/uLKdX2UKGgGR0Bwt9fQa72+aAdL2mgIR0CX6+3ta6jGdX2UKGgGR0BxHZF1B+nZaAdL4WgIR0CX7YKUFB6bdX2UKGgGR0BuDilN1yNoaAdNHAFoCEdAl+3Dvqkdm3V9lChoBkdAbVjhoduHe2gHS+JoCEdAl+8TWwu/UXV9lChoBkdAaZ/7rLQokWgHS/doCEdAl+++EZiuuHV9lChoBkdAb+OqnWJ79mgHS9loCEdAl/EJQ+EAYHV9lChoBkdAaQOHD7655WgHTakBaAhHQJfxHPLPldV1fZQoaAZHQCw3C9AX2uhoB0uvaAhHQJfxTmNipeh1fZQoaAZHQEEd7CSA6MloB0vLaAhHQJfx5P0qYqp1fZQoaAZHQG8vr7Gecx1oB0vyaAhHQJfyTskY4yZ1fZQoaAZHQChkDOkcjqxoB0ugaAhHQJfzgu6ErXl1fZQoaAZHQG47m+bmU4doB0vtaAhHQJf0QIyCWeJ1fZQoaAZHQHB4Oe4Cp3poB0v2aAhHQJf0rX/YJ3R1fZQoaAZHQG6bwDeTFERoB00FAWgIR0CX9URMewLWdX2UKGgGR0Bx8PZyuIRAaAdN5gFoCEdAl/VHxe9i+nV9lChoBkdAXD1c5bQkX2gHTegDaAhHQJf1x46fapR1fZQoaAZHQHCafV7Qb+9oB0v8aAhHQJf2dgYxcml1fZQoaAZHQG+4x8D0UXZoB0v0aAhHQJf3qJm/WUd1fZQoaAZHQHEWMVtXPqtoB0vJaAhHQJf4Adp7Czl1fZQoaAZHQG8YCz1K5CpoB0vsaAhHQJf5d3KSxJN1fZQoaAZHQG9dEsasIVxoB00ZAWgIR0CX+Y7TlT3qdX2UKGgGR0BwpZIg/1QJaAdL+WgIR0CX+nr2g398dX2UKGgGR0BiiDfgrH2iaAdN6ANoCEdAl/saqXF98nV9lChoBkdAbhJUpd8iOmgHS+doCEdAl/0nlXA/LXV9lChoBkdAcMxOuq3mWGgHS/JoCEdAl/2YbGWD6HV9lChoBkdAcHvNY8uBc2gHTRQBaAhHQJf+RG7SRbN1fZQoaAZHQHDGkIcBEKFoB0vqaAhHQJf+wjTrmhd1fZQoaAZHQGzFBzmwJPZoB00MAWgIR0CX/y38GcFydX2UKGgGR0BwJdY5ksjFaAdL72gIR0CYAPAjIJZ4dX2UKGgGR0BrwaVY6nzhaAdN8gJoCEdAmAHhPGhmG3V9lChoBkdAcduDRc/t6WgHTbEBaAhHQJgC3exfOUt1fZQoaAZHQHCORoEjgQ9oB0v+aAhHQJgEcLUkOZt1fZQoaAZHQDG82S+xnnNoB0uhaAhHQJgFbzRQaaV1fZQoaAZHQHAR0W2w3YNoB0vmaAhHQJgFgukDZDl1fZQoaAZHQHAWF85S3spoB0vOaAhHQJgHG+g13t91fZQoaAZHQEorwb2lEZ1oB0uRaAhHQJgIUyzolld1fZQoaAZHQHB5fKQq7RRoB01NAWgIR0CYChQzUI9ldX2UKGgGR0Bv7M7OmixnaAdL4mgIR0CYCpnw5NoKdX2UKGgGR0BwaNzgdfb9aAdL8mgIR0CYCsKLsKLLdX2UKGgGR0ByPR0+1SflaAdNgwFoCEdAmAtoESuhbnV9lChoBkdAcGhKdhAnlWgHTQoBaAhHQJgMw4GUwBZ1fZQoaAZHQEDbdOZb6gxoB0uuaAhHQJgNDxiG34N1fZQoaAZHQGyQ/xUedTZoB0vzaAhHQJgOdiSaEzx1fZQoaAZHQG2CKJVKf4BoB0v7aAhHQJgQ3ktEofF1fZQoaAZHQG4hhqsU7CBoB0veaAhHQJgQ/SOR1YB1fZQoaAZHQG+jZhKDkENoB00MAWgIR0CYEYS1maphdX2UKGgGR0BvB9fAsTWYaAdL6GgIR0CYFCRqoIfKdX2UKGgGR0Btvb5dnkDIaAdNBgFoCEdAmBVjRIBikXV9lChoBkdAcDXsEaESNGgHS+hoCEdAmBZRrnDBM3V9lChoBkdAcYkN5dGAkWgHS9JoCEdAmBdiMglniHV9lChoBkdAbe2x4Y77sWgHTQIBaAhHQJgX2rKeTV51fZQoaAZHQHCAqpcX3xpoB01HAWgIR0CYGPzEaVD8dX2UKGgGR0BwXosH0K7aaAdLxmgIR0CYGbW9US7HdX2UKGgGR0Bfje0LMLWqaAdN6ANoCEdAmBr10T101nV9lChoBkdANLkt7KJVKmgHS4RoCEdAmBwsbiqABnV9lChoBkdAcD2ws5GSZGgHS85oCEdAmB1JuqFRHnV9lChoBkdAXs7pwCKaX2gHTegDaAhHQJgd8DKYAsF1fZQoaAZHQGJghkI5YHRoB03oA2gIR0CYHqo4dZJTdX2UKGgGR0BxIQw0waisaAdL1mgIR0CYHsJ17pmmdX2UKGgGR0BsCUdq+JxeaAdNgwJoCEdAmB7JEMLF43V9lChoBkdAcGoqJ/G2kWgHTVEBaAhHQJgf5m8M/hV1fZQoaAZHQHA+TTOPeYVoB0vWaAhHQJggRoAXEZR1fZQoaAZHQHD8m03Ov+xoB0vfaAhHQJgif003wTd1fZQoaAZHQF9PQVKwpvxoB03oA2gIR0CYIq7IkqtpdX2UKGgGR0BuoUaqCHymaAdL+2gIR0CYIv4vvjOtdX2UKGgGR0BF4nryDqW1aAdLq2gIR0CYJQBaLXMAdX2UKGgGR0Bvc0JjUd7waAdL52gIR0CYJRELH+6zdX2UKGgGR0BwJMwYcebNaAdL9GgIR0CYJr4ACGN8dX2UKGgGR0Bv3yS5iExqaAdL2mgIR0CYJySxqwhXdX2UKGgGR0BtzcdxQzk7aAdL8mgIR0CYJ0lGgBcSdX2UKGgGR0BxEU/eLvTgaAdL9GgIR0CYKEB9Tgl4dX2UKGgGR0Bt9c5hjOLSaAdNqAFoCEdAmCkPSlWOqHV9lChoBkfAMCfvjOs1bmgHS6NoCEdAmCkwtJ4B3nV9lChoBkdAcBF+23KB/mgHS/NoCEdAmCnyVGCqZXV9lChoBkdAbLQF36hxpGgHS/9oCEdAmCn5+pfhM3V9lChoBkdAcOKqXnhbW2gHS+toCEdAmCwPR3NcGHV9lChoBkdAcff55qubJGgHS95oCEdAmC4MuOCGvnV9lChoBkdAbpNZ5AyEc2gHS/JoCEdAmC8EEX+ERXV9lChoBkdAb8mZ+hGpdmgHS99oCEdAmDB3YHxBmnV9lChoBkdAb28tYjjaPGgHS8xoCEdAmDCvSYw7DHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.9, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 256, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "False", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |