Esteban00007
commited on
Upload PPO LunarLander-v2 trained agent
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +24 -24
- ppo-LunarLander-v2/policy.optimizer.pth +2 -2
- ppo-LunarLander-v2/policy.pth +2 -2
- ppo-LunarLander-v2/system_info.txt +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 193.44 +/- 101.91
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x783582f3d120>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x783582f3d1b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x783582f3d240>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x783582f3d2d0>", "_build": "<function ActorCriticPolicy._build at 0x783582f3d360>", "forward": "<function ActorCriticPolicy.forward at 0x783582f3d3f0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x783582f3d480>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x783582f3d510>", "_predict": "<function ActorCriticPolicy._predict at 0x783582f3d5a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x783582f3d630>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x783582f3d6c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x783582f3d750>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x783524cae980>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1001000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1733303484689507423, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAObuAz3rZVA/sVQrPLyWlr7aBpQ8sWjEOQAAAAAAAAAAE9w3PsM/L7ydqfq4My7TNhW0lr3XRxg4AACAPwAAgD+aBCq94cCxujkrmLq8aXq0peBluKvVrTkAAIA/AACAPzNTvTxB70o/bZhfPVIWkb51Kkk8mDLrPAAAAAAAAAAATb/yvblKtD+DVum+3xSMvgErJL6FG9q9AAAAAAAAAABmn5q9PZh7P5sWAr461Ia+gNHNvZaIhT0AAAAAAAAAAACYZTv2r5o/IUcxvH9/sL6brI27lhOZPAAAAAAAAAAATcqhvV+LrjxFe709ucsVvl+xsrxq0PK8AAAAAAAAAABmaEK9zoQqP9o2G76axb6+mx80vXrFijwAAAAAAAAAAGYzxbx78xo/1RYrvZcypr7T4zK9OhWPvQAAAAAAAAAAZtRpPIxJtz9iBjc/3F/oPgDxZ7xATO+9AAAAAAAAAABN0R0+adsqP3nlpbz2y5W+CM05PXwsOr0AAAAAAAAAAICymL2fBro86VSru63ETb6MbZi8Np9bPQAAAAAAAAAAM3xRvQvS/D3n8C29UMpMvjzLwrzKiEk9AAAAAAAAAACNaa69/oOGPRmXMj6CeiK+RSjhPNPIeb0AAAAAAAAAAAbYYz6jPQQ/rCwLveolmr6Qf+w9/VL/vAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.014793206793206837, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG1IW74BV++MAWyUTUYBjAF0lEdAlUn6W1MM7XV9lChoBkdAbdDT850bLmgHTYkBaAhHQJVKbqGDcud1fZQoaAZHQHDDcD8tPHloB004AWgIR0CVSvdJ8OTadX2UKGgGR0Byh0dS2phnaAdNmAFoCEdAlWOLwjMV13V9lChoBkdAbqfl7tzCDWgHTSABaAhHQJVjwDvE0i11fZQoaAZHQGuU4CQtBfNoB00oAWgIR0CVZSWDYh+wdX2UKGgGR0BuEuZVn27GaAdNiQFoCEdAlWUwWac7Q3V9lChoBkdAch08zQ/oq2gHTZkBaAhHQJVmOyY5T611fZQoaAZHQG5mcuSOinJoB02LAWgIR0CVZ8RZEDyOdX2UKGgGR0By4dz4k/r0aAdNOQFoCEdAlWfnQ+lj3HV9lChoBkdAcuwNQj2SMmgHTWkBaAhHQJVoLL7oB7x1fZQoaAZHQHAIazAvcrRoB01sAWgIR0CVaKp4KQaKdX2UKGgGR0Bw3K6qbSZ0aAdNTQFoCEdAlWj99+gDinV9lChoBkdAcneFfReC1GgHS/xoCEdAlWlCcTakAXV9lChoBkdAca4g3974SGgHTTwBaAhHQJVpfR/mT1V1fZQoaAZHQHDVcJx//edoB01sAWgIR0CVagPLgXMydX2UKGgGR0BxaVGx2SuAaAdNNAFoCEdAlWpRkEs8PnV9lChoBkdAcoP76Hj6vmgHTWABaAhHQJVqi3XqZ+h1fZQoaAZHQHGnJPqLS/loB01WAWgIR0CVasj1PFefdX2UKGgGR0BwZD8wYcebaAdNGAFoCEdAlW5avq1PWXV9lChoBkdAbr2Q04zabmgHTSUBaAhHQJVu5Ew35vd1fZQoaAZHQG5Oz0xubZxoB01UAWgIR0CVb1hbW3BpdX2UKGgGR0ByccnH/95yaAdNYQFoCEdAlW+aZlWfb3V9lChoBkdAcB3wqy4WlGgHTUUBaAhHQJVw/WVeKKp1fZQoaAZHQHDuGWt2cKBoB01HAWgIR0CVcp+kP+XJdX2UKGgGR0AmjA6dUbT+aAdNCgFoCEdAlXLWKMvRJHV9lChoBkdAcEr5cTrVv2gHTVgBaAhHQJVzyY5T6zp1fZQoaAZHQG/qwI+nqFBoB01MAWgIR0CVdIb3Gn4xdX2UKGgGR0BwPQjOcDr7aAdNbAFoCEdAlXV8Q/X5FnV9lChoBkdAcGzet0V8C2gHTTgBaAhHQJV18tz0Yj11fZQoaAZHQHBAXXVbzK9oB01LAWgIR0CVdkh73PAwdX2UKGgGR0BwXkqc3EQ5aAdNdAFoCEdAlXZoJE6T4nV9lChoBkdAcKlmvW6K+GgHTa4BaAhHQJV22IYWLxZ1fZQoaAZHQG1C61b7j1hoB02dAWgIR0CVdvC/47A+dX2UKGgGR0BwPtYQrc0taAdNaAFoCEdAlXb4/A0sOHV9lChoBkdAbwN9ORDCxmgHTUMBaAhHQJV51a2WpqB1fZQoaAZHQHD7AJb+tKZoB001AWgIR0CVeda0QbuMdX2UKGgGR0BrR4w482aVaAdNMwFoCEdAlXohrFfiP3V9lChoBkdAbhVikO7QLWgHTVUBaAhHQJV7bIzWPLh1fZQoaAZHQG7gUJng5zZoB00vAWgIR0CVfP50KZ2IdX2UKGgGR0BwYAefZmI1aAdNbgFoCEdAlX3HtWuHOHV9lChoBkdAcjG/cnE2pGgHTRsBaAhHQJV/TA+IM0B1fZQoaAZHQGrHArYoRZloB017AWgIR0CVf+7xd6cBdX2UKGgGR0BsMBInSfDlaAdNTwFoCEdAlYAESuhbn3V9lChoBkdAcZHEVFhG6WgHTWcBaAhHQJWAO0D2alV1fZQoaAZHQHK3fVd5Y5loB00pAWgIR0CVgNmeDnNgdX2UKGgGR0Bvfe0AtFrmaAdNZgFoCEdAlYKbDEWIoHV9lChoBkdAcRxiiItUXGgHTV0BaAhHQJWDFLuhK151fZQoaAZHQHDiZkXk5p9oB013AWgIR0CVg2ymygPFdX2UKGgGR0BvVdp9JBgNaAdNwAFoCEdAlYUe2Zy+6HV9lChoBkdAb3kzZYgaFWgHTSkBaAhHQJWFLGwRoRJ1fZQoaAZHQGvFNmL9/BpoB01TAWgIR0CVmtE6T4cndX2UKGgGR0BwHYPI4lyBaAdNewFoCEdAlZxJSR8tw3V9lChoBkdAcDPw+MZP22gHTUkBaAhHQJWeHB2wFC91fZQoaAZHQHBTR/NJOFhoB013AWgIR0CVniviLl3hdX2UKGgGR0BuFJ7eEZivaAdNSQFoCEdAlZ7t9H+ZPXV9lChoBkdAbl4mBvrGBGgHTT0BaAhHQJWf7lgc94h1fZQoaAZHQG/13225QP9oB00/AWgIR0CVoOjbi6xxdX2UKGgGR0BwREYCQtBfaAdNYQFoCEdAlaH+cMEzPHV9lChoBkdAcQc7aIvalGgHTSoBaAhHQJWjc8zQ/ot1fZQoaAZHQG1HyFGoaUBoB01sAWgIR0CVo4EBbOeKdX2UKGgGR0Bub4jOcDr7aAdNUwFoCEdAlaQ47V8TjHV9lChoBkdAcOhDiOvMbGgHTU8BaAhHQJWkeskpqh11fZQoaAZHQGuA7Ou7pV1oB02tAWgIR0CVpP5O8CgcdX2UKGgGR0BwW6c9W6siaAdNSQFoCEdAlaYjlLeyiXV9lChoBkdAb3SAYpDu0GgHTTcBaAhHQJWmm4iHIp91fZQoaAZHQHJWREORT0hoB01dAWgIR0CVpte0G/vfdX2UKGgGR0Byz7CAMDwIaAdNUQFoCEdAlai9XT3IuHV9lChoBkdAcR7482aUimgHTR4BaAhHQJWpQDmr8zh1fZQoaAZHQHArHDWK/EhoB01KAWgIR0CVqhS7oStedX2UKGgGR0BzHrO2RaHLaAdNWAFoCEdAlaqSuMdcS3V9lChoBkdAckA3yI55q2gHTRgBaAhHQJWqrSro4dZ1fZQoaAZHQG4d+IuXeFdoB01KAWgIR0CVq4I1+AmRdX2UKGgGR0BwCOisXBP9aAdNDAFoCEdAlaw6q0dBB3V9lChoBkdAbU2zBRAKOWgHTTEBaAhHQJWuZYJVsDZ1fZQoaAZHQGIs/b0voNdoB03oA2gIR0CVrr+NtIkJdX2UKGgGR0Bwbrpt78ekaAdNRAFoCEdAla+knb7CSHV9lChoBkdAcprKsMiKSGgHTXkBaAhHQJWwA/KQq7R1fZQoaAZHQHLB+vpyIYZoB02BAWgIR0CVsPy7f51vdX2UKGgGR0BDEWK/EfknaAdNDwFoCEdAlbHyP2f03HV9lChoBkdAcM4M1jy4F2gHTVoBaAhHQJWyR/wy6+Z1fZQoaAZHQHEPQLRa5gBoB01yAWgIR0CVspzPa+N+dX2UKGgGR0Bxi545cTrWaAdNFQFoCEdAlbOX531SO3V9lChoBkdAcKk4UN8VpWgHTXkBaAhHQJWznM/yGzt1fZQoaAZHQHFYYJiRW91oB00LAmgIR0CVs/djoZAIdX2UKGgGR0Bur+Xw9aEBaAdNPQFoCEdAlbV8QZn+Q3V9lChoBkdAcHX5Lh73PGgHTXIBaAhHQJW1zBacI7h1fZQoaAZHQHINeS4e9zxoB00tAWgIR0CVtcn003wTdX2UKGgGR0BxICBEroW6aAdNKgFoCEdAlbZQudwvQHV9lChoBkdAbzEjMV1wHmgHTWIBaAhHQJW2a7EpAlh1fZQoaAZHQHBIMpTdcjZoB002AWgIR0CVuScNpdrwdX2UKGgGR0By+jOTq0MPaAdNRwFoCEdAlblph8Yyf3V9lChoBkdAbBXaEi+tbWgHTTYBaAhHQJW6bH5rP+p1fZQoaAZHQG9l4J3PiUBoB01DAWgIR0CVuoK4x1xLdX2UKGgGR0BON9Sde6ZqaAdL2mgIR0CVuxiXIEKWdX2UKGgGR0Bwqk7/4qPPaAdNDwFoCEdAlbumjKxLTXV9lChoBkdAcDdznA6+4GgHTTgBaAhHQJW8fAHmig11fZQoaAZHQG2K7BoEjgRoB01GAWgIR0CVvVA57w8XdX2UKGgGR0Bu9ZMewLVnaAdNcAFoCEdAlb2cMAmzB3V9lChoBkdAbAXc+qzZ6GgHTT4BaAhHQJW+riQ1aW51ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 250, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a9149f637f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a9149f63880>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a9149f63910>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a9149f639a0>", "_build": "<function ActorCriticPolicy._build at 0x7a9149f63a30>", "forward": "<function ActorCriticPolicy.forward at 0x7a9149f63ac0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a9149f63b50>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a9149f63be0>", "_predict": "<function ActorCriticPolicy._predict at 0x7a9149f63c70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a9149f63d00>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a9149f63d90>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a9149f63e20>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a90eb94bb40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1733322383302775088, "learning_rate": 0.0003, "tensorboard_log": "./ppo_tensorboard/", "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAICifL1EXco+DL2FPd/+sL7UzEg8xeFJvAAAAAAAAAAAgD9NPX/auT/Grxg/e8QKPvXoTrzuK8M9AAAAAAAAAACdQOo+HCnQvf6WiDzWX1O7hp6Yvg1mtboAAIA/AACAPzO3BzyP8nU/Wg4Dvdyo+L6mTz68KnALvQAAAAAAAAAAM6pkPoHF+rxQkis9Ucivu2ysXb6aEYW8AACAPwAAgD/AntE+Nu4fPVvxs71qVim81uVUPt7lzbwAAIA/AACAPxoNqL7wto29eMf9vCvlBb43AIU+FlVePQAAgD8AAIA/miQZPntSvbraGYyw0NaEscyWzLq2lFKyAACAPwAAgD82ctA+I2ETPZRYOr3vIWa+qZ0FPQivgLoAAAAAAAAAACZP8r0fHc65d98vPdToMT11HR+6m1gnPgAAgD8AAIA/LRB7Pp3sCr1rS+M6ikWFuSnzc74lnxW6AACAPwAAgD8AYoE+H93nPCOd7zr7NKU5II94PsJ0KroAAIA/AACAP7Nadr6T+3U/Z66EvgayAr8GwUW+QtpUPQAAAAAAAAAAHVChPhy1Vj3LOKo79ZIAOhNTiz71YfO6AACAPwAAgD+af748Pz21P+f7RT/x/UI9AEKvvFUX2L0AAAAAAAAAAOb4LL5vcQM9I2EaPqtkN74V0Xs810o1PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVAgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQDlO9eyAxzuMAWyUS7uMAXSUR0CX3/bSZ0CBdX2UKGgGR0BuUyrT6SDAaAdL1mgIR0CX4NahpQDWdX2UKGgGR0BuCPzasZHeaAdNQwFoCEdAl+JEP+XJHXV9lChoBkdAXYhXaJyhjGgHTegDaAhHQJfjHSlWOp91fZQoaAZHQG+WjUExIrhoB0vdaAhHQJfjfdi2Dxt1fZQoaAZHQFqLnv2GqPxoB03oA2gIR0CX46rfcer/dX2UKGgGR0Az0JKraM72aAdLsGgIR0CX47nHNorXdX2UKGgGR0BxX22PT5O8aAdL5WgIR0CX5F8zAN5MdX2UKGgGR0BruK8Djin6aAdNfgFoCEdAl+SHbVSXMXV9lChoBkdAbQj69kBjnWgHTRUBaAhHQJfkwEjgQ6J1fZQoaAZHQG2hZpSJj2BoB00MAWgIR0CX5g9s7+1jdX2UKGgGR0Bw/Wd+XqqwaAdL12gIR0CX5p7aqS5idX2UKGgGR0BuGLmlqJuVaAdL4GgIR0CX52/z8P4EdX2UKGgGR0BgO27OE/SqaAdN6ANoCEdAl+eR8hLXc3V9lChoBkdAbtsD6FdszmgHTQEBaAhHQJfpXxAjY7J1fZQoaAZHQHCVMabWmP5oB0v5aAhHQJfpv0J4SpR1fZQoaAZHQEBeTN+so2JoB0vWaAhHQJfqrH2h7E51fZQoaAZHQG95P7vXsgNoB0vfaAhHQJfrDodMj/x1fZQoaAZHQHBoyx/ustFoB0v4aAhHQJfryzqrzXl1fZQoaAZHQHAVymIj4YdoB00CAWgIR0CX6+Mj/uLKdX2UKGgGR0Bwt9fQa72+aAdL2mgIR0CX6+3ta6jGdX2UKGgGR0BxHZF1B+nZaAdL4WgIR0CX7YKUFB6bdX2UKGgGR0BuDilN1yNoaAdNHAFoCEdAl+3Dvqkdm3V9lChoBkdAbVjhoduHe2gHS+JoCEdAl+8TWwu/UXV9lChoBkdAaZ/7rLQokWgHS/doCEdAl+++EZiuuHV9lChoBkdAb+OqnWJ79mgHS9loCEdAl/EJQ+EAYHV9lChoBkdAaQOHD7655WgHTakBaAhHQJfxHPLPldV1fZQoaAZHQCw3C9AX2uhoB0uvaAhHQJfxTmNipeh1fZQoaAZHQEEd7CSA6MloB0vLaAhHQJfx5P0qYqp1fZQoaAZHQG8vr7Gecx1oB0vyaAhHQJfyTskY4yZ1fZQoaAZHQChkDOkcjqxoB0ugaAhHQJfzgu6ErXl1fZQoaAZHQG47m+bmU4doB0vtaAhHQJf0QIyCWeJ1fZQoaAZHQHB4Oe4Cp3poB0v2aAhHQJf0rX/YJ3R1fZQoaAZHQG6bwDeTFERoB00FAWgIR0CX9URMewLWdX2UKGgGR0Bx8PZyuIRAaAdN5gFoCEdAl/VHxe9i+nV9lChoBkdAXD1c5bQkX2gHTegDaAhHQJf1x46fapR1fZQoaAZHQHCafV7Qb+9oB0v8aAhHQJf2dgYxcml1fZQoaAZHQG+4x8D0UXZoB0v0aAhHQJf3qJm/WUd1fZQoaAZHQHEWMVtXPqtoB0vJaAhHQJf4Adp7Czl1fZQoaAZHQG8YCz1K5CpoB0vsaAhHQJf5d3KSxJN1fZQoaAZHQG9dEsasIVxoB00ZAWgIR0CX+Y7TlT3qdX2UKGgGR0BwpZIg/1QJaAdL+WgIR0CX+nr2g398dX2UKGgGR0BiiDfgrH2iaAdN6ANoCEdAl/saqXF98nV9lChoBkdAbhJUpd8iOmgHS+doCEdAl/0nlXA/LXV9lChoBkdAcMxOuq3mWGgHS/JoCEdAl/2YbGWD6HV9lChoBkdAcHvNY8uBc2gHTRQBaAhHQJf+RG7SRbN1fZQoaAZHQHDGkIcBEKFoB0vqaAhHQJf+wjTrmhd1fZQoaAZHQGzFBzmwJPZoB00MAWgIR0CX/y38GcFydX2UKGgGR0BwJdY5ksjFaAdL72gIR0CYAPAjIJZ4dX2UKGgGR0BrwaVY6nzhaAdN8gJoCEdAmAHhPGhmG3V9lChoBkdAcduDRc/t6WgHTbEBaAhHQJgC3exfOUt1fZQoaAZHQHCORoEjgQ9oB0v+aAhHQJgEcLUkOZt1fZQoaAZHQDG82S+xnnNoB0uhaAhHQJgFbzRQaaV1fZQoaAZHQHAR0W2w3YNoB0vmaAhHQJgFgukDZDl1fZQoaAZHQHAWF85S3spoB0vOaAhHQJgHG+g13t91fZQoaAZHQEorwb2lEZ1oB0uRaAhHQJgIUyzolld1fZQoaAZHQHB5fKQq7RRoB01NAWgIR0CYChQzUI9ldX2UKGgGR0Bv7M7OmixnaAdL4mgIR0CYCpnw5NoKdX2UKGgGR0BwaNzgdfb9aAdL8mgIR0CYCsKLsKLLdX2UKGgGR0ByPR0+1SflaAdNgwFoCEdAmAtoESuhbnV9lChoBkdAcGhKdhAnlWgHTQoBaAhHQJgMw4GUwBZ1fZQoaAZHQEDbdOZb6gxoB0uuaAhHQJgNDxiG34N1fZQoaAZHQGyQ/xUedTZoB0vzaAhHQJgOdiSaEzx1fZQoaAZHQG2CKJVKf4BoB0v7aAhHQJgQ3ktEofF1fZQoaAZHQG4hhqsU7CBoB0veaAhHQJgQ/SOR1YB1fZQoaAZHQG+jZhKDkENoB00MAWgIR0CYEYS1maphdX2UKGgGR0BvB9fAsTWYaAdL6GgIR0CYFCRqoIfKdX2UKGgGR0Btvb5dnkDIaAdNBgFoCEdAmBVjRIBikXV9lChoBkdAcDXsEaESNGgHS+hoCEdAmBZRrnDBM3V9lChoBkdAcYkN5dGAkWgHS9JoCEdAmBdiMglniHV9lChoBkdAbe2x4Y77sWgHTQIBaAhHQJgX2rKeTV51fZQoaAZHQHCAqpcX3xpoB01HAWgIR0CYGPzEaVD8dX2UKGgGR0BwXosH0K7aaAdLxmgIR0CYGbW9US7HdX2UKGgGR0Bfje0LMLWqaAdN6ANoCEdAmBr10T101nV9lChoBkdANLkt7KJVKmgHS4RoCEdAmBwsbiqABnV9lChoBkdAcD2ws5GSZGgHS85oCEdAmB1JuqFRHnV9lChoBkdAXs7pwCKaX2gHTegDaAhHQJgd8DKYAsF1fZQoaAZHQGJghkI5YHRoB03oA2gIR0CYHqo4dZJTdX2UKGgGR0BxIQw0waisaAdL1mgIR0CYHsJ17pmmdX2UKGgGR0BsCUdq+JxeaAdNgwJoCEdAmB7JEMLF43V9lChoBkdAcGoqJ/G2kWgHTVEBaAhHQJgf5m8M/hV1fZQoaAZHQHA+TTOPeYVoB0vWaAhHQJggRoAXEZR1fZQoaAZHQHD8m03Ov+xoB0vfaAhHQJgif003wTd1fZQoaAZHQF9PQVKwpvxoB03oA2gIR0CYIq7IkqtpdX2UKGgGR0BuoUaqCHymaAdL+2gIR0CYIv4vvjOtdX2UKGgGR0BF4nryDqW1aAdLq2gIR0CYJQBaLXMAdX2UKGgGR0Bvc0JjUd7waAdL52gIR0CYJRELH+6zdX2UKGgGR0BwJMwYcebNaAdL9GgIR0CYJr4ACGN8dX2UKGgGR0Bv3yS5iExqaAdL2mgIR0CYJySxqwhXdX2UKGgGR0BtzcdxQzk7aAdL8mgIR0CYJ0lGgBcSdX2UKGgGR0BxEU/eLvTgaAdL9GgIR0CYKEB9Tgl4dX2UKGgGR0Bt9c5hjOLSaAdNqAFoCEdAmCkPSlWOqHV9lChoBkfAMCfvjOs1bmgHS6NoCEdAmCkwtJ4B3nV9lChoBkdAcBF+23KB/mgHS/NoCEdAmCnyVGCqZXV9lChoBkdAbLQF36hxpGgHS/9oCEdAmCn5+pfhM3V9lChoBkdAcOKqXnhbW2gHS+toCEdAmCwPR3NcGHV9lChoBkdAcff55qubJGgHS95oCEdAmC4MuOCGvnV9lChoBkdAbpNZ5AyEc2gHS/JoCEdAmC8EEX+ERXV9lChoBkdAb8mZ+hGpdmgHS99oCEdAmDB3YHxBmnV9lChoBkdAb28tYjjaPGgHS8xoCEdAmDCvSYw7DHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.9, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 256, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "False", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:102f4acdc9032eb5be2c1bc3621670fe4cd0dffd479fe3e747b96ba6be5e12de
|
3 |
+
size 147442
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,34 +4,34 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
"num_timesteps": 1015808,
|
25 |
-
"_total_timesteps":
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
-
"start_time":
|
30 |
"learning_rate": 0.0003,
|
31 |
-
"tensorboard_log":
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
-
":serialized:": "
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -41,17 +41,17 @@
|
|
41 |
"_episode_num": 0,
|
42 |
"use_sde": false,
|
43 |
"sde_sample_freq": -1,
|
44 |
-
"_current_progress_remaining": -0.
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
-
":serialized:": "
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
-
"_n_updates":
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
@@ -77,14 +77,14 @@
|
|
77 |
"_np_random": null
|
78 |
},
|
79 |
"n_envs": 16,
|
80 |
-
"n_steps":
|
81 |
"gamma": 0.999,
|
82 |
-
"gae_lambda": 0.
|
83 |
"ent_coef": 0.01,
|
84 |
"vf_coef": 0.5,
|
85 |
"max_grad_norm": 0.5,
|
86 |
-
"batch_size":
|
87 |
-
"n_epochs":
|
88 |
"clip_range": {
|
89 |
":type:": "<class 'function'>",
|
90 |
":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7a9149f637f0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a9149f63880>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a9149f63910>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a9149f639a0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7a9149f63a30>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7a9149f63ac0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7a9149f63b50>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a9149f63be0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7a9149f63c70>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a9149f63d00>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a9149f63d90>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7a9149f63e20>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7a90eb94bb40>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
+
"start_time": 1733322383302775088,
|
30 |
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": "./ppo_tensorboard/",
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAICifL1EXco+DL2FPd/+sL7UzEg8xeFJvAAAAAAAAAAAgD9NPX/auT/Grxg/e8QKPvXoTrzuK8M9AAAAAAAAAACdQOo+HCnQvf6WiDzWX1O7hp6Yvg1mtboAAIA/AACAPzO3BzyP8nU/Wg4Dvdyo+L6mTz68KnALvQAAAAAAAAAAM6pkPoHF+rxQkis9Ucivu2ysXb6aEYW8AACAPwAAgD/AntE+Nu4fPVvxs71qVim81uVUPt7lzbwAAIA/AACAPxoNqL7wto29eMf9vCvlBb43AIU+FlVePQAAgD8AAIA/miQZPntSvbraGYyw0NaEscyWzLq2lFKyAACAPwAAgD82ctA+I2ETPZRYOr3vIWa+qZ0FPQivgLoAAAAAAAAAACZP8r0fHc65d98vPdToMT11HR+6m1gnPgAAgD8AAIA/LRB7Pp3sCr1rS+M6ikWFuSnzc74lnxW6AACAPwAAgD8AYoE+H93nPCOd7zr7NKU5II94PsJ0KroAAIA/AACAP7Nadr6T+3U/Z66EvgayAr8GwUW+QtpUPQAAAAAAAAAAHVChPhy1Vj3LOKo79ZIAOhNTiz71YfO6AACAPwAAgD+af748Pz21P+f7RT/x/UI9AEKvvFUX2L0AAAAAAAAAAOb4LL5vcQM9I2EaPqtkN74V0Xs810o1PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
41 |
"_episode_num": 0,
|
42 |
"use_sde": false,
|
43 |
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVAgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQDlO9eyAxzuMAWyUS7uMAXSUR0CX3/bSZ0CBdX2UKGgGR0BuUyrT6SDAaAdL1mgIR0CX4NahpQDWdX2UKGgGR0BuCPzasZHeaAdNQwFoCEdAl+JEP+XJHXV9lChoBkdAXYhXaJyhjGgHTegDaAhHQJfjHSlWOp91fZQoaAZHQG+WjUExIrhoB0vdaAhHQJfjfdi2Dxt1fZQoaAZHQFqLnv2GqPxoB03oA2gIR0CX46rfcer/dX2UKGgGR0Az0JKraM72aAdLsGgIR0CX47nHNorXdX2UKGgGR0BxX22PT5O8aAdL5WgIR0CX5F8zAN5MdX2UKGgGR0BruK8Djin6aAdNfgFoCEdAl+SHbVSXMXV9lChoBkdAbQj69kBjnWgHTRUBaAhHQJfkwEjgQ6J1fZQoaAZHQG2hZpSJj2BoB00MAWgIR0CX5g9s7+1jdX2UKGgGR0Bw/Wd+XqqwaAdL12gIR0CX5p7aqS5idX2UKGgGR0BuGLmlqJuVaAdL4GgIR0CX52/z8P4EdX2UKGgGR0BgO27OE/SqaAdN6ANoCEdAl+eR8hLXc3V9lChoBkdAbtsD6FdszmgHTQEBaAhHQJfpXxAjY7J1fZQoaAZHQHCVMabWmP5oB0v5aAhHQJfpv0J4SpR1fZQoaAZHQEBeTN+so2JoB0vWaAhHQJfqrH2h7E51fZQoaAZHQG95P7vXsgNoB0vfaAhHQJfrDodMj/x1fZQoaAZHQHBoyx/ustFoB0v4aAhHQJfryzqrzXl1fZQoaAZHQHAVymIj4YdoB00CAWgIR0CX6+Mj/uLKdX2UKGgGR0Bwt9fQa72+aAdL2mgIR0CX6+3ta6jGdX2UKGgGR0BxHZF1B+nZaAdL4WgIR0CX7YKUFB6bdX2UKGgGR0BuDilN1yNoaAdNHAFoCEdAl+3Dvqkdm3V9lChoBkdAbVjhoduHe2gHS+JoCEdAl+8TWwu/UXV9lChoBkdAaZ/7rLQokWgHS/doCEdAl+++EZiuuHV9lChoBkdAb+OqnWJ79mgHS9loCEdAl/EJQ+EAYHV9lChoBkdAaQOHD7655WgHTakBaAhHQJfxHPLPldV1fZQoaAZHQCw3C9AX2uhoB0uvaAhHQJfxTmNipeh1fZQoaAZHQEEd7CSA6MloB0vLaAhHQJfx5P0qYqp1fZQoaAZHQG8vr7Gecx1oB0vyaAhHQJfyTskY4yZ1fZQoaAZHQChkDOkcjqxoB0ugaAhHQJfzgu6ErXl1fZQoaAZHQG47m+bmU4doB0vtaAhHQJf0QIyCWeJ1fZQoaAZHQHB4Oe4Cp3poB0v2aAhHQJf0rX/YJ3R1fZQoaAZHQG6bwDeTFERoB00FAWgIR0CX9URMewLWdX2UKGgGR0Bx8PZyuIRAaAdN5gFoCEdAl/VHxe9i+nV9lChoBkdAXD1c5bQkX2gHTegDaAhHQJf1x46fapR1fZQoaAZHQHCafV7Qb+9oB0v8aAhHQJf2dgYxcml1fZQoaAZHQG+4x8D0UXZoB0v0aAhHQJf3qJm/WUd1fZQoaAZHQHEWMVtXPqtoB0vJaAhHQJf4Adp7Czl1fZQoaAZHQG8YCz1K5CpoB0vsaAhHQJf5d3KSxJN1fZQoaAZHQG9dEsasIVxoB00ZAWgIR0CX+Y7TlT3qdX2UKGgGR0BwpZIg/1QJaAdL+WgIR0CX+nr2g398dX2UKGgGR0BiiDfgrH2iaAdN6ANoCEdAl/saqXF98nV9lChoBkdAbhJUpd8iOmgHS+doCEdAl/0nlXA/LXV9lChoBkdAcMxOuq3mWGgHS/JoCEdAl/2YbGWD6HV9lChoBkdAcHvNY8uBc2gHTRQBaAhHQJf+RG7SRbN1fZQoaAZHQHDGkIcBEKFoB0vqaAhHQJf+wjTrmhd1fZQoaAZHQGzFBzmwJPZoB00MAWgIR0CX/y38GcFydX2UKGgGR0BwJdY5ksjFaAdL72gIR0CYAPAjIJZ4dX2UKGgGR0BrwaVY6nzhaAdN8gJoCEdAmAHhPGhmG3V9lChoBkdAcduDRc/t6WgHTbEBaAhHQJgC3exfOUt1fZQoaAZHQHCORoEjgQ9oB0v+aAhHQJgEcLUkOZt1fZQoaAZHQDG82S+xnnNoB0uhaAhHQJgFbzRQaaV1fZQoaAZHQHAR0W2w3YNoB0vmaAhHQJgFgukDZDl1fZQoaAZHQHAWF85S3spoB0vOaAhHQJgHG+g13t91fZQoaAZHQEorwb2lEZ1oB0uRaAhHQJgIUyzolld1fZQoaAZHQHB5fKQq7RRoB01NAWgIR0CYChQzUI9ldX2UKGgGR0Bv7M7OmixnaAdL4mgIR0CYCpnw5NoKdX2UKGgGR0BwaNzgdfb9aAdL8mgIR0CYCsKLsKLLdX2UKGgGR0ByPR0+1SflaAdNgwFoCEdAmAtoESuhbnV9lChoBkdAcGhKdhAnlWgHTQoBaAhHQJgMw4GUwBZ1fZQoaAZHQEDbdOZb6gxoB0uuaAhHQJgNDxiG34N1fZQoaAZHQGyQ/xUedTZoB0vzaAhHQJgOdiSaEzx1fZQoaAZHQG2CKJVKf4BoB0v7aAhHQJgQ3ktEofF1fZQoaAZHQG4hhqsU7CBoB0veaAhHQJgQ/SOR1YB1fZQoaAZHQG+jZhKDkENoB00MAWgIR0CYEYS1maphdX2UKGgGR0BvB9fAsTWYaAdL6GgIR0CYFCRqoIfKdX2UKGgGR0Btvb5dnkDIaAdNBgFoCEdAmBVjRIBikXV9lChoBkdAcDXsEaESNGgHS+hoCEdAmBZRrnDBM3V9lChoBkdAcYkN5dGAkWgHS9JoCEdAmBdiMglniHV9lChoBkdAbe2x4Y77sWgHTQIBaAhHQJgX2rKeTV51fZQoaAZHQHCAqpcX3xpoB01HAWgIR0CYGPzEaVD8dX2UKGgGR0BwXosH0K7aaAdLxmgIR0CYGbW9US7HdX2UKGgGR0Bfje0LMLWqaAdN6ANoCEdAmBr10T101nV9lChoBkdANLkt7KJVKmgHS4RoCEdAmBwsbiqABnV9lChoBkdAcD2ws5GSZGgHS85oCEdAmB1JuqFRHnV9lChoBkdAXs7pwCKaX2gHTegDaAhHQJgd8DKYAsF1fZQoaAZHQGJghkI5YHRoB03oA2gIR0CYHqo4dZJTdX2UKGgGR0BxIQw0waisaAdL1mgIR0CYHsJ17pmmdX2UKGgGR0BsCUdq+JxeaAdNgwJoCEdAmB7JEMLF43V9lChoBkdAcGoqJ/G2kWgHTVEBaAhHQJgf5m8M/hV1fZQoaAZHQHA+TTOPeYVoB0vWaAhHQJggRoAXEZR1fZQoaAZHQHD8m03Ov+xoB0vfaAhHQJgif003wTd1fZQoaAZHQF9PQVKwpvxoB03oA2gIR0CYIq7IkqtpdX2UKGgGR0BuoUaqCHymaAdL+2gIR0CYIv4vvjOtdX2UKGgGR0BF4nryDqW1aAdLq2gIR0CYJQBaLXMAdX2UKGgGR0Bvc0JjUd7waAdL52gIR0CYJRELH+6zdX2UKGgGR0BwJMwYcebNaAdL9GgIR0CYJr4ACGN8dX2UKGgGR0Bv3yS5iExqaAdL2mgIR0CYJySxqwhXdX2UKGgGR0BtzcdxQzk7aAdL8mgIR0CYJ0lGgBcSdX2UKGgGR0BxEU/eLvTgaAdL9GgIR0CYKEB9Tgl4dX2UKGgGR0Bt9c5hjOLSaAdNqAFoCEdAmCkPSlWOqHV9lChoBkfAMCfvjOs1bmgHS6NoCEdAmCkwtJ4B3nV9lChoBkdAcBF+23KB/mgHS/NoCEdAmCnyVGCqZXV9lChoBkdAbLQF36hxpGgHS/9oCEdAmCn5+pfhM3V9lChoBkdAcOKqXnhbW2gHS+toCEdAmCwPR3NcGHV9lChoBkdAcff55qubJGgHS95oCEdAmC4MuOCGvnV9lChoBkdAbpNZ5AyEc2gHS/JoCEdAmC8EEX+ERXV9lChoBkdAb8mZ+hGpdmgHS99oCEdAmDB3YHxBmnV9lChoBkdAb28tYjjaPGgHS8xoCEdAmDCvSYw7DHVlLg=="
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
+
"_n_updates": 310,
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
|
|
77 |
"_np_random": null
|
78 |
},
|
79 |
"n_envs": 16,
|
80 |
+
"n_steps": 2048,
|
81 |
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.9,
|
83 |
"ent_coef": 0.01,
|
84 |
"vf_coef": 0.5,
|
85 |
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 256,
|
87 |
+
"n_epochs": 10,
|
88 |
"clip_range": {
|
89 |
":type:": "<class 'function'>",
|
90 |
":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b65a1c18025c10fe1f872015ae3c120dd44898ca857483f1fe37963f1efcf205
|
3 |
+
size 87978
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f02704868fb0201b48787ab091abc8bd0d2fee2e918882e02dd84d3bb572a860
|
3 |
+
size 43634
|
ppo-LunarLander-v2/system_info.txt
CHANGED
@@ -2,7 +2,7 @@
|
|
2 |
- Python: 3.10.12
|
3 |
- Stable-Baselines3: 2.0.0a5
|
4 |
- PyTorch: 2.5.1+cu121
|
5 |
-
- GPU Enabled:
|
6 |
- Numpy: 1.26.4
|
7 |
- Cloudpickle: 3.1.0
|
8 |
- Gymnasium: 0.28.1
|
|
|
2 |
- Python: 3.10.12
|
3 |
- Stable-Baselines3: 2.0.0a5
|
4 |
- PyTorch: 2.5.1+cu121
|
5 |
+
- GPU Enabled: False
|
6 |
- Numpy: 1.26.4
|
7 |
- Cloudpickle: 3.1.0
|
8 |
- Gymnasium: 0.28.1
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 193.4385865530357, "std_reward": 101.90507432444328, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-12-04T14:52:16.455679"}
|