EphronM's picture
Update README.md
fc8624e verified
|
raw
history blame
5.41 kB
metadata
license: cc-by-nc-sa-4.0
base_model: microsoft/layoutlmv3-base
tags:
  - generated_from_trainer
  - layoutmlv3
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: layoutlmv3-finetuned-passport
    results: []
datasets:
  - EphronM/Annotated_passport_images
language:
  - en
pipeline_tag: token-classification

layoutlmv3-finetuned-passport

This model is a fine-tuned version of microsoft/layoutlmv3-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0655
  • Precision: 0.9735
  • Recall: 0.9847
  • F1: 0.9790
  • Accuracy: 0.9892

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 4000

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 3.4483 100 0.6286 0.7930 0.7778 0.7853 0.8898
No log 6.8966 200 0.1945 0.9423 0.9387 0.9405 0.9719
No log 10.3448 300 0.0832 0.9730 0.9655 0.9692 0.9870
No log 13.7931 400 0.0558 0.9660 0.9808 0.9734 0.9870
0.398 17.2414 500 0.0524 0.9624 0.9808 0.9715 0.9870
0.398 20.6897 600 0.0462 0.9735 0.9847 0.9790 0.9892
0.398 24.1379 700 0.0543 0.9660 0.9808 0.9734 0.9870
0.398 27.5862 800 0.0463 0.9735 0.9847 0.9790 0.9892
0.398 31.0345 900 0.0569 0.9624 0.9808 0.9715 0.9870
0.0139 34.4828 1000 0.0729 0.9515 0.9770 0.9641 0.9849
0.0139 37.9310 1100 0.0656 0.9624 0.9808 0.9715 0.9870
0.0139 41.3793 1200 0.0609 0.9624 0.9808 0.9715 0.9870
0.0139 44.8276 1300 0.0525 0.9732 0.9732 0.9732 0.9892
0.0139 48.2759 1400 0.0735 0.9515 0.9770 0.9641 0.9849
0.0072 51.7241 1500 0.0491 0.9547 0.9693 0.9620 0.9870
0.0072 55.1724 1600 0.0416 0.9773 0.9885 0.9829 0.9914
0.0072 58.6207 1700 0.0472 0.9773 0.9885 0.9829 0.9914
0.0072 62.0690 1800 0.0543 0.9735 0.9847 0.9790 0.9892
0.0072 65.5172 1900 0.0619 0.9662 0.9847 0.9753 0.9892
0.0029 68.9655 2000 0.0670 0.9624 0.9808 0.9715 0.9870
0.0029 72.4138 2100 0.0770 0.9624 0.9808 0.9715 0.9870
0.0029 75.8621 2200 0.0700 0.9624 0.9808 0.9715 0.9870
0.0029 79.3103 2300 0.0655 0.9624 0.9808 0.9715 0.9870
0.0029 82.7586 2400 0.0684 0.9624 0.9808 0.9715 0.9870
0.0012 86.2069 2500 0.0700 0.9624 0.9808 0.9715 0.9870
0.0012 89.6552 2600 0.0696 0.9624 0.9808 0.9715 0.9870
0.0012 93.1034 2700 0.0619 0.9735 0.9847 0.9790 0.9892
0.0012 96.5517 2800 0.0630 0.9735 0.9847 0.9790 0.9892
0.0012 100.0 2900 0.0703 0.9733 0.9770 0.9751 0.9892
0.0009 103.4483 3000 0.0655 0.9735 0.9847 0.9790 0.9892
0.0009 106.8966 3100 0.0653 0.9735 0.9847 0.9790 0.9892
0.0009 110.3448 3200 0.0657 0.9735 0.9847 0.9790 0.9892
0.0009 113.7931 3300 0.0660 0.9735 0.9847 0.9790 0.9892
0.0009 117.2414 3400 0.0655 0.9735 0.9847 0.9790 0.9892
0.0008 120.6897 3500 0.0663 0.9735 0.9847 0.9790 0.9892
0.0008 124.1379 3600 0.0663 0.9735 0.9847 0.9790 0.9892
0.0008 127.5862 3700 0.0666 0.9735 0.9847 0.9790 0.9892
0.0008 131.0345 3800 0.0648 0.9735 0.9847 0.9790 0.9892
0.0008 134.4828 3900 0.0660 0.9735 0.9847 0.9790 0.9892
0.0009 137.9310 4000 0.0660 0.9735 0.9847 0.9790 0.9892

Framework versions

  • Transformers 4.44.0.dev0
  • Pytorch 2.1.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1