Edit model card

BERT Text Classification Model

This is a simple model for text classification using BERT.

Usage

To use the model, you can call the classify_text function with a text input, and it will return the predicted class label.

text = "This is a positive review."
predicted_class = classify_text(text)
print("Predicted class:", predicted_class)

from transformers import BertTokenizer, BertForSequenceClassification

# Load pre-trained BERT tokenizer and model
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertForSequenceClassification.from_pretrained('bert-base-uncased')

# Define a function to classify text
def classify_text(text):
    inputs = tokenizer(text, return_tensors='pt', padding=True, truncation=True)
    outputs = model(**inputs)
    logits = outputs.logits
    probabilities = logits.softmax(dim=1)
    predicted_class = probabilities.argmax(dim=1).item()
    return predicted_class

# Example usage
text = "This is a positive review."
predicted_class = classify_text(text)
print("Predicted class:", predicted_class)
Downloads last month
0
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train EngrSamad/BERT-Text-Classification-Model

Space using EngrSamad/BERT-Text-Classification-Model 1