|
import base64 |
|
from io import BytesIO |
|
from typing import Dict, Any |
|
|
|
import torch |
|
from PIL import Image |
|
from diffusers import StableDiffusionPipeline |
|
|
|
|
|
|
|
def decode_base64_image(image_string): |
|
base64_image = base64.b64decode(image_string) |
|
buffer = BytesIO(base64_image) |
|
return Image.open(buffer) |
|
|
|
|
|
class EndpointHandler: |
|
def __init__(self, path=""): |
|
self.pipe = StableDiffusionPipeline.from_pretrained("/repository/stable-diffusion-v1-5", |
|
torch_dtype=torch.float16, revision="fp16") |
|
self.pipe = self.pipe.to("cuda") |
|
|
|
def __call__(self, data: Any) -> Dict[str, str]: |
|
""" |
|
Return predict value. |
|
:param data: A dictionary contains `inputs` and optional `image` field. |
|
:return: A dictionary with `image` field contains image in base64. |
|
""" |
|
prompts = data.pop("inputs", None) |
|
encoded_image = data.pop("image", None) |
|
init_image = None |
|
if encoded_image: |
|
init_image = decode_base64_image(encoded_image) |
|
init_image.thumbnail((768, 768)) |
|
|
|
image = self.pipe(prompts, init_image=init_image).images[0] |
|
buffered = BytesIO() |
|
image.save(buffered, format="png") |
|
img_str = base64.b64encode(buffered.getvalue()) |
|
|
|
return {"image": img_str.decode()} |
|
|