import base64 from io import BytesIO from typing import Dict, Any import torch from PIL import Image from diffusers import StableDiffusionPipeline # helper decoder def decode_base64_image(image_string): base64_image = base64.b64decode(image_string) buffer = BytesIO(base64_image) return Image.open(buffer) class EndpointHandler: def __init__(self, path=""): self.pipe = StableDiffusionPipeline.from_pretrained("/repository/stable-diffusion-v1-5", torch_dtype=torch.float16, revision="fp16") self.pipe = self.pipe.to("cuda") def __call__(self, data: Any) -> Dict[str, str]: """ Return predict value. :param data: A dictionary contains `inputs` and optional `image` field. :return: A dictionary with `image` field contains image in base64. """ prompts = data.pop("inputs", None) encoded_image = data.pop("image", None) init_image = None if encoded_image: init_image = decode_base64_image(encoded_image) init_image.thumbnail((768, 768)) image = self.pipe(prompts, init_image=init_image).images[0] buffered = BytesIO() image.save(buffered, format="png") img_str = base64.b64encode(buffered.getvalue()) return {"image": img_str.decode()}