Dependency setups:

# other transformers version may also work, but we have not tested
pip install transformers==4.46 accelerate opencv-python torchvision einops pillow
pip install git+https://github.com/bfshi/scaling_on_scales.git

Usage

from transformers import AutoConfig, AutoModel
from termcolor import colored

model_path = "Efficient-Large-Model/NVILA-Lite-2B-hf-preview"

# you can use config
config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
model = AutoModel.from_config(config, trust_remote_code=True)
# or directly from_pretrained
model = AutoModel.from_pretrained(model_path, trust_remote_code=True, device_map="auto")

# examples generate with raw text
res = model.generate_content([
    "how are you today?"
])
print(colored(res, "cyan", attrs=["bold"]))

print("---" * 40)

# examples generate with text + image
import PIL.Image
response = model.generate_content([
    PIL.Image.open("inference_test/test_data/caption_meat.jpeg"),
    "describe the image?"
])
print(colored(response, "cyan", attrs=["bold"]))

AutoProcessor

we also support AutoProcessor class to ease data preparation for training and finetuning.

from transformers import AutoProcessor, AutoModel

model_path = "Efficient-Large-Model/NVILA-Lite-2B-hf-preview"
processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True)

gpt_conv = [ {
    "role": "user",
    "content": [
        {"type": "image", "path": "demo_images/demo_img_1.png"},
        {"type": "text", "text": "Describe this image."}
    ]
}]

inputs = processor.apply_chat_template(conversation=gpt_conv, padding=True, return_tensors="pt")
model = AutoModel.from_pretrained(model_path, trust_remote_code=True, device_map="auto")
output_ids = model.generate(
    input_ids=inputs.input_ids,
    media={
        "image": inputs.image,
    },
    media_config={
        "image": {}
    },
    generation_config=model.generation_config,
    max_new_tokens=256,
)
print(processor.tokenizer.decode(output_ids[0], skip_special_tokens=True))

##### the above code is equivalent to
# response = model.generate_content([
#     PIL.Image.open("demo_images/demo_img_1.png"),
#     "describe the image?"
# ])
# print(colored(response, "cyan", attrs=["bold"]))

Model Convert

The follwing code converts a convetional NVILA model to a HF compatible model.

import os, os.path as osp
from transformers import AutoConfig, AutoModel, AutoProcessor, AutoTokenizer, AutoImageProcessor

model_path = "Efficient-Large-Model/NVILA-Lite-2B"
output_dir = "NVILA-Lite-2B-hf-preview"

if osp.isdir(output_dir):
    shutil.rmtree(output_dir)
from llava.remote_code.modeling_vila import VILAForCasualLM
VILAForCasualLM.convert_vila_dev_ckpt_to_remote(model_path, output_dir, copy=False)
Downloads last month
575
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.

Collection including Efficient-Large-Model/NVILA-Lite-2B-hf-preview