|
--- |
|
tags: |
|
- text-generation |
|
license: cc-by-nc-sa-4.0 |
|
language: |
|
- ko |
|
base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0 |
|
pipeline_tag: text-generation |
|
--- |
|
|
|
# **DataVortexTL-1.1B-v0.1** |
|
<img src="./DataVortex.png" alt="DataVortex" style="height: 8em;"> |
|
|
|
## **License** |
|
|
|
[cc-by-nc-sa-4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/) |
|
|
|
## **Model Details** |
|
|
|
### **Base Model** |
|
[TinyLlama/TinyLlama-1.1B-Chat-v1.0](https://huggingface.co./TinyLlama/TinyLlama-1.1B-Chat-v1.0) |
|
|
|
### **Trained On** |
|
H100 80GB 1ea |
|
|
|
### **Instruction format** |
|
|
|
<!-- It follows **(No Input) Alpaca** format. --> |
|
|
|
## **Model Benchmark** |
|
|
|
### **Ko-LLM-Leaderboard** |
|
|
|
On Benchmarking... |
|
|
|
# **Implementation Code** |
|
|
|
Since, chat_template already contains insturction format above. |
|
You can use the code below. |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
device = "cuda" |
|
|
|
model = AutoModelForCausalLM.from_pretrained("Edentns/DataVortexTL-1.1B-v0.1", device_map=device) |
|
tokenizer = AutoTokenizer.from_pretrained("Edentns/DataVortexTL-1.1B-v0.1") |
|
|
|
messages = [ |
|
{ "role": "user", "content": "대한민국의 수도는 어디야?" } |
|
] |
|
|
|
encoded = tokenizer.apply_chat_template( |
|
messages, |
|
add_generation_prompt=True, |
|
return_tensors="pt", |
|
return_token_type_ids=False |
|
).to(device) |
|
|
|
decoded = model.generate( |
|
input_ids=encoded, |
|
temperature=0.2, |
|
top_p=0.9, |
|
repetition_penalty=1.2, |
|
do_sample=True, |
|
max_length=4096, |
|
eos_token_id=tokenizer.eos_token_id, |
|
pad_token_id=tokenizer.eos_token_id |
|
) |
|
decoded = decoded[0][encoded.shape[1]:decoded[0].shape[-1]] |
|
decoded_text = tokenizer.decode(decoded, skip_special_tokens=True) |
|
print(decoded_text) |
|
``` |
|
|
|
<div align="center"> |
|
<a href="https://edentns.com/"> |
|
<img src="./Logo.png" alt="Logo" style="height: 3em;"> |
|
</a> |
|
</div> |
|
|