JeongwonChoi's picture
Initial commit
ab0ad5b verified
|
raw
history blame
3.63 kB
---
tags:
- text-generation
license: cc-by-nc-4.0
language:
- ko
base_model: upstage/SOLAR-10.7B-Instruct-v1.0
pipeline_tag: text-generation
---
# **DataVortexS-10.7B-dpo-v1.6**
<img src="./DataVortex.png" alt="DataVortex" style="height: 8em;">
## **Model Details**
### **Base Model**
[upstage/SOLAR-10.7B-Instruct-v1.0](https://huggingface.co./upstage/SOLAR-10.7B-Instruct-v1.0)
### **Trained On**
- **OS**: Ubuntu 22.04
- **GPU**: H100 80GB 4ea
- **transformers**: v4.36.2
### **Instruction format**
It follows **ChatML** format.
E.g.
```python
text = """\
<|im_start|>system
당신은 μ‚¬λžŒλ“€μ΄ 정보λ₯Ό 찾을 수 μžˆλ„λ‘ λ„μ™€μ£ΌλŠ” 인곡지λŠ₯ λΉ„μ„œμž…λ‹ˆλ‹€.<|im_end|>
<|im_start|>user
λŒ€ν•œλ―Όκ΅­μ˜ μˆ˜λ„λŠ” μ–΄λ””μ•Ό?<|im_end|>
<|im_start|>assistant
λŒ€ν•œλ―Όκ΅­μ˜ μˆ˜λ„λŠ” μ„œμšΈμž…λ‹ˆλ‹€.<|im_end|>
<|im_start|>user
μ„œμšΈ μΈκ΅¬λŠ” 총 λͺ‡ λͺ…이야?<|im_end|>
<|im_start|>assistant
"""
```
## **Model Benchmark**
### **[Ko LM Eval Harness](https://github.com/Beomi/ko-lm-evaluation-harness)**
On Benchmarking ...
| Task | 0-shot | 5-shot | 10-shot | 50-shot |
| :--------------- | ------: | ------: | ------: | ------: |
| kobest_boolq | 0.0 | 0.0 | 0.0 | 0.0 |
| kobest_copa | 0.0 | 0.0 | 0.0 | 0.0 |
| kobest_hellaswag | 0.0 | 0.0 | 0.0 | 0.0 |
| kobest_sentineg | 0.0 | 0.0 | 0.0 | 0.0 |
| **Average** | **0.0** | **0.0** | **0.0** | **0.0** |
### **[Ko-LLM-Leaderboard](https://huggingface.co./spaces/upstage/open-ko-llm-leaderboard)**
On Benchmarking ...
| Average | Ko-ARC | Ko-HellaSwag | Ko-MMLU | Ko-TruthfulQA | Ko-CommonGen V2 |
| ------: | -----: | -----------: | ------: | ------------: | --------------: |
| 0 | 0 | 0 | 0 | 0 | 0 |
## **Implementation Code**
This model contains the chat_template instruction format.
You can use the code below.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda" # the device to load the model onto
model = AutoModelForCausalLM.from_pretrained("Edentns/DataVortexS-10.7B-dpo-v1.6")
tokenizer = AutoTokenizer.from_pretrained("Edentns/DataVortexS-10.7B-dpo-v1.6")
messages = [
{"role": "system", "content": "당신은 μ‚¬λžŒλ“€μ΄ 정보λ₯Ό 찾을 수 μžˆλ„λ‘ λ„μ™€μ£ΌλŠ” 인곡지λŠ₯ λΉ„μ„œμž…λ‹ˆλ‹€."},
{"role": "user", "content": "λŒ€ν•œλ―Όκ΅­μ˜ μˆ˜λ„λŠ” μ–΄λ””μ•Ό?"},
{"role": "assistant", "content": "λŒ€ν•œλ―Όκ΅­μ˜ μˆ˜λ„λŠ” μ„œμšΈμž…λ‹ˆλ‹€."},
{"role": "user", "content": "μ„œμšΈ μΈκ΅¬λŠ” 총 λͺ‡ λͺ…이야?"}
]
encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt")
model_inputs = encodeds.to(device)
model.to(device)
generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True)
decoded = tokenizer.batch_decode(generated_ids)
print(decoded[0])
```
## **License**
This model is licensed under the [upstage/SOLAR-10.7B-Instruct-v1.0](https://huggingface.co./upstage/SOLAR-10.7B-Instruct-v1.0) license, with the [cc-by-nc-4.0](https://creativecommons.org/licenses/by-nc/4.0/) license granted. Under this license, others are allowed to copy, modify, and share the work, as long as it is not used for commercial purposes. They must provide appropriate credit and distribute any derivative works under the same license. For more details, please refer to the [cc-by-nc-4.0](https://creativecommons.org/licenses/by-nc/4.0/) license.
<div align="center">
<a href="https://edentns.com/">
<img src="./Logo.png" alt="Logo" style="height: 3em;">
</a>
</div>