JeongwonChoi's picture
Update README.md
d09ba5c verified
|
raw
history blame
3.34 kB
metadata
tags:
  - text-generation
license: cc-by-nc-4.0
language:
  - ko
base_model: yanolja/KoSOLAR-10.7B-v0.2
pipeline_tag: text-generation

DataVortexS-10.7B-dpo-v1.3

DataVortex

Model Details

Base Model

yanolja/KoSOLAR-10.7B-v0.2

Trained On

  • OS: Ubuntu 22.04
  • GPU: H100 80GB 4ea
  • transformers: v4.36.2

Instruction format

It follows ChatML format.

E.g.

text = """\
<|im_start|>system
당신은 μ‚¬λžŒλ“€μ΄ 정보λ₯Ό 찾을 수 μžˆλ„λ‘ λ„μ™€μ£ΌλŠ” 인곡지λŠ₯ λΉ„μ„œμž…λ‹ˆλ‹€.<|im_end|>
<|im_start|>user
λŒ€ν•œλ―Όκ΅­μ˜ μˆ˜λ„λŠ” μ–΄λ””μ•Ό?<|im_end|>
<|im_start|>assistant
λŒ€ν•œλ―Όκ΅­μ˜ μˆ˜λ„λŠ” μ„œμšΈμž…λ‹ˆλ‹€.<|im_end|>
<|im_start|>user
μ„œμšΈ μΈκ΅¬λŠ” 총 λͺ‡ λͺ…이야?<|im_end|>
<|im_start|>assistant
"""

Model Benchmark

Ko LM Eval Harness

Task 0-shot 5-shot 10-shot 50-shot
kobest_boolq 0.91154 0.927338 0.92373 0.653224
kobest_copa 0.747317 0.826961 0.842943 0.860989
kobest_hellaswag 0.445855 0.459065 0.462306 0.4721
kobest_sentineg 0.483219 0.95466 0.964734 0.972292
Average 0.646983 0.792006 0.798428 0.739651

Ko-LLM-Leaderboard

On Benchmarking ...

Average Ko-ARC Ko-HellaSwag Ko-MMLU Ko-TruthfulQA Ko-CommonGen V2
0 0 0 0 0 0

Implementation Code

This model contains the chat_template instruction format.
You can use the code below.

from transformers import AutoModelForCausalLM, AutoTokenizer

device = "cuda" # the device to load the model onto

model = AutoModelForCausalLM.from_pretrained("Edentns/DataVortexS-10.7B-dpo-v1.3")
tokenizer = AutoTokenizer.from_pretrained("Edentns/DataVortexS-10.7B-dpo-v1.3")

messages = [
    {"role": "system", "content": "당신은 μ‚¬λžŒλ“€μ΄ 정보λ₯Ό 찾을 수 μžˆλ„λ‘ λ„μ™€μ£ΌλŠ” 인곡지λŠ₯ λΉ„μ„œμž…λ‹ˆλ‹€."},
    {"role": "user", "content": "λŒ€ν•œλ―Όκ΅­μ˜ μˆ˜λ„λŠ” μ–΄λ””μ•Ό?"},
    {"role": "assistant", "content": "λŒ€ν•œλ―Όκ΅­μ˜ μˆ˜λ„λŠ” μ„œμšΈμž…λ‹ˆλ‹€."},
    {"role": "user", "content": "μ„œμšΈ μΈκ΅¬λŠ” 총 λͺ‡ λͺ…이야?"}
]

encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt")

model_inputs = encodeds.to(device)
model.to(device)

generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True)
decoded = tokenizer.batch_decode(generated_ids)
print(decoded[0])

License

This model is licensed under the cc-by-nc-4.0. which allows others to share and adapt the model for non-commercial purposes.