Text Generation
Transformers
Safetensors
Korean
llama
conversational
text-generation-inference
Inference Endpoints
Edit model card

DataVortexS-10.7B-dpo-v0.1

DataVortex

Our Team

Research & Engineering Product Management
Kwangseok Yang Seunghyun Choi
Jeongwon Choi Hyoseok Choi

Model Details

Base Model

LDCC/LDCC-SOLAR-10.7B

Trained On

  • OS: Ubuntu 20.04
  • GPU: H100 80GB 2ea
  • transformers: v4.36.2

Dataset

Instruction format

It follows Alpaca format.

E.g.

text = """\
๋‹น์‹ ์€ ์‚ฌ๋žŒ๋“ค์ด ์ •๋ณด๋ฅผ ์ฐพ์„ ์ˆ˜ ์žˆ๋„๋ก ๋„์™€์ฃผ๋Š” ์ธ๊ณต์ง€๋Šฅ ๋น„์„œ์ž…๋‹ˆ๋‹ค.

### User:
๋Œ€ํ•œ๋ฏผ๊ตญ์˜ ์ˆ˜๋„๋Š” ์–ด๋””์•ผ?

### Assistant:
๋Œ€ํ•œ๋ฏผ๊ตญ์˜ ์ˆ˜๋„๋Š” ์„œ์šธ์ž…๋‹ˆ๋‹ค.

### User:
์„œ์šธ ์ธ๊ตฌ๋Š” ์ด ๋ช‡ ๋ช…์ด์•ผ?
"""

Model Benchmark

Ko LM Eval Harness

Task 0-shot 5-shot 10-shot 50-shot
kobest_boolq 0.334282 0.891367 0.896755 0.884441
kobest_copa 0.697763 0.716762 0.724769 0.751746
kobest_hellaswag 0.432047 0.458301 0.443993 0.458232
kobest_sentineg 0.49353 0.954657 0.964735 0.949606
Average 0.4894055 0.75527175 0.757563 0.76100625

Ko-LLM-Leaderboard

Average Ko-ARC Ko-HellaSwag Ko-MMLU Ko-TruthfulQA Ko-CommonGen V2
53.21 47.87 57.18 54.82 53.64 52.54

Implementation Code

This model contains the chat_template instruction format.
You can use the code below.

from transformers import AutoModelForCausalLM, AutoTokenizer

device = "cuda" # the device to load the model onto

model = AutoModelForCausalLM.from_pretrained("Edentns/DataVortexS-10.7B-dpo-v0.1")
tokenizer = AutoTokenizer.from_pretrained("Edentns/DataVortexS-10.7B-dpo-v0.1")

messages = [
    {"role": "system", "content": "๋‹น์‹ ์€ ์‚ฌ๋žŒ๋“ค์ด ์ •๋ณด๋ฅผ ์ฐพ์„ ์ˆ˜ ์žˆ๋„๋ก ๋„์™€์ฃผ๋Š” ์ธ๊ณต์ง€๋Šฅ ๋น„์„œ์ž…๋‹ˆ๋‹ค."},
    {"role": "user", "content": "๋Œ€ํ•œ๋ฏผ๊ตญ์˜ ์ˆ˜๋„๋Š” ์–ด๋””์•ผ?"},
    {"role": "assistant", "content": "๋Œ€ํ•œ๋ฏผ๊ตญ์˜ ์ˆ˜๋„๋Š” ์„œ์šธ์ž…๋‹ˆ๋‹ค."},
    {"role": "user", "content": "์„œ์šธ ์ธ๊ตฌ๋Š” ์ด ๋ช‡ ๋ช…์ด์•ผ?"}
]

encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt")

model_inputs = encodeds.to(device)
model.to(device)

generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True)
decoded = tokenizer.batch_decode(generated_ids)
print(decoded[0])

License

The model is licensed under the cc-by-nc-sa-4.0 license, which allows others to copy, modify, and share the work non-commercially, as long as they give appropriate credit and distribute any derivative works under the same license.

Downloads last month
4,123
Safetensors
Model size
10.9B params
Tensor type
FP16
ยท
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Edentns/DataVortexS-10.7B-dpo-v0.1

Finetuned
(9)
this model

Datasets used to train Edentns/DataVortexS-10.7B-dpo-v0.1

Collection including Edentns/DataVortexS-10.7B-dpo-v0.1