Built with Axolotl

See axolotl config

axolotl version: 0.4.1

base_model: MangyMango/testing1
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer

trust_remote_code: true

load_in_8bit: false
load_in_4bit: false
strict: false

datasets:
  - path: civit-slop-combined.jsonl
    type: alpaca
    conversation: mpt-30b-instruct

chat_template: alpaca

dataset_prepared_path:
val_set_size: 0.05
output_dir: ./outputs/sd-prompter
sequence_len: 2048
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true

adapter:
lora_model_dir:
lora_r:
lora_alpha:
lora_dropout:
lora_target_linear: true
lora_fan_in_fan_out:

wandb_project: Mango-SDprompt-qwen
wandb_entity:
wandb_watch:
wandb_name: qwen1.5b-2
wandb_log_model:

gradient_accumulation_steps: 64
micro_batch_size: 2
num_epochs: 3
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 0.00002

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: true

gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_ratio: 0.05
evals_per_epoch: 4
saves_per_epoch: 1
debug:
#deepspeed: deepspeed_configs/zero2.json
#deepspeed: /training/axolotl/axolotl/deepspeed_configs/zero2.json
weight_decay: 0.0
#fsdp:
#fsdp_config:
#  fsdp_limit_all_gathers: true
#  fsdp_sync_module_states: true
#  fsdp_offload_params: true
#  fsdp_use_orig_params: false
#  fsdp_cpu_ram_efficient_loading: true
#  fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
#  fsdp_transformer_layer_cls_to_wrap: Qwen2DecoderLayer
#  fsdp_state_dict_type: FULL_STATE_DICT
special_tokens:

outputs/sd-prompter

This model is a fine-tuned version of MangyMango/testing1 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 3.4889

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 64
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 2
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss
3.4783 0.0793 1 4.2312
3.3803 0.2379 3 3.8651
3.0646 0.4758 6 3.6872
2.8913 0.7138 9 3.6106
2.9159 0.9517 12 3.5590
2.819 1.1660 15 3.5307
2.8095 1.4040 18 3.5109
2.8054 1.6419 21 3.4995
2.9067 1.8798 24 3.4933
2.8035 2.0954 27 3.4903
2.7619 2.3333 30 3.4890
2.8226 2.5713 33 3.4891
2.7211 2.8092 36 3.4889

Framework versions

  • Transformers 4.44.0.dev0
  • Pytorch 2.1.2+cu118
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
1
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.