See axolotl config
axolotl version: 0.4.1
base_model: MangyMango/testing1
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
trust_remote_code: true
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: civit-slop-combined.jsonl
type: alpaca
conversation: mpt-30b-instruct
chat_template: alpaca
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./outputs/sd-prompter
sequence_len: 2048
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true
adapter:
lora_model_dir:
lora_r:
lora_alpha:
lora_dropout:
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project: Mango-SDprompt-qwen
wandb_entity:
wandb_watch:
wandb_name: qwen1.5b-2
wandb_log_model:
gradient_accumulation_steps: 64
micro_batch_size: 2
num_epochs: 3
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 0.00002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: true
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_ratio: 0.05
evals_per_epoch: 4
saves_per_epoch: 1
debug:
#deepspeed: deepspeed_configs/zero2.json
#deepspeed: /training/axolotl/axolotl/deepspeed_configs/zero2.json
weight_decay: 0.0
#fsdp:
#fsdp_config:
# fsdp_limit_all_gathers: true
# fsdp_sync_module_states: true
# fsdp_offload_params: true
# fsdp_use_orig_params: false
# fsdp_cpu_ram_efficient_loading: true
# fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
# fsdp_transformer_layer_cls_to_wrap: Qwen2DecoderLayer
# fsdp_state_dict_type: FULL_STATE_DICT
special_tokens:
outputs/sd-prompter
This model is a fine-tuned version of MangyMango/testing1 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 3.4889
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 64
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 2
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
3.4783 | 0.0793 | 1 | 4.2312 |
3.3803 | 0.2379 | 3 | 3.8651 |
3.0646 | 0.4758 | 6 | 3.6872 |
2.8913 | 0.7138 | 9 | 3.6106 |
2.9159 | 0.9517 | 12 | 3.5590 |
2.819 | 1.1660 | 15 | 3.5307 |
2.8095 | 1.4040 | 18 | 3.5109 |
2.8054 | 1.6419 | 21 | 3.4995 |
2.9067 | 1.8798 | 24 | 3.4933 |
2.8035 | 2.0954 | 27 | 3.4903 |
2.7619 | 2.3333 | 30 | 3.4890 |
2.8226 | 2.5713 | 33 | 3.4891 |
2.7211 | 2.8092 | 36 | 3.4889 |
Framework versions
- Transformers 4.44.0.dev0
- Pytorch 2.1.2+cu118
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 1
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no library tag.