See axolotl config
axolotl version: 0.4.1
base_model: Qwen/Qwen2-1.5B
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
trust_remote_code: true
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: civit-slop-combined.jsonl
type: alpaca
chat_template: chatml
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./outputs/out
sequence_len: 2048
sample_packing: true
eval_sample_packing: true
pad_to_sequence_len: true
adapter:
lora_model_dir:
lora_r:
lora_alpha:
lora_dropout:
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project: Mango-SDprompt-qwen
wandb_entity:
wandb_watch:
wandb_name: qwen1.5b-2
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 1
num_epochs: 4
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: true
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_ratio: 0.2
evals_per_epoch: 4
saves_per_epoch: 1
debug:
#deepspeed: deepspeed_configs/zero2.json
#deepspeed: /training/axolotl/axolotl/deepspeed_configs/zero2.json
weight_decay: 0.0
#fsdp:
#fsdp_config:
# fsdp_limit_all_gathers: true
# fsdp_sync_module_states: true
# fsdp_offload_params: true
# fsdp_use_orig_params: false
# fsdp_cpu_ram_efficient_loading: true
# fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
# fsdp_transformer_layer_cls_to_wrap: Qwen2DecoderLayer
# fsdp_state_dict_type: FULL_STATE_DICT
special_tokens:
outputs/out
This model is a fine-tuned version of Qwen/Qwen2-1.5B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 4.9785
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 312
- num_epochs: 4
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
3.4279 | 0.0024 | 1 | 4.1321 |
2.6008 | 0.2516 | 106 | 3.4527 |
2.7346 | 0.5033 | 212 | 3.6512 |
3.0676 | 0.7549 | 318 | 3.8178 |
3.2084 | 1.0065 | 424 | 3.7616 |
2.6999 | 1.2368 | 530 | 3.8072 |
2.3664 | 1.4884 | 636 | 3.7223 |
3.0722 | 1.7401 | 742 | 3.6350 |
2.7612 | 1.9917 | 848 | 3.5670 |
1.2179 | 2.2226 | 954 | 4.0217 |
1.5539 | 2.4742 | 1060 | 3.9957 |
1.255 | 2.7258 | 1166 | 4.0404 |
0.9165 | 2.9774 | 1272 | 4.0294 |
0.1785 | 3.2089 | 1378 | 4.9794 |
0.1931 | 3.4605 | 1484 | 4.9763 |
0.3729 | 3.7122 | 1590 | 4.9785 |
Framework versions
- Transformers 4.44.0.dev0
- Pytorch 2.1.2+cu118
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 3
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for Edens-Gate/sd-gen-1.5b
Base model
Qwen/Qwen2-1.5B