|
--- |
|
license: mit |
|
base_model: facebook/bart-large-cnn |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: 02_ToS-BART |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# 02_ToS-BART |
|
|
|
This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co./facebook/bart-large-cnn) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5697 |
|
- Rouge1: 0.6086 |
|
- Rouge2: 0.4577 |
|
- Rougel: 0.5072 |
|
- Rougelsum: 0.5071 |
|
- Gen Len: 110.7293 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 3e-05 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 6 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:--------:| |
|
| No log | 1.0 | 360 | 0.5018 | 0.5957 | 0.44 | 0.4873 | 0.4876 | 110.8398 | |
|
| 0.049 | 2.0 | 720 | 0.5468 | 0.5923 | 0.4364 | 0.4812 | 0.4813 | 111.6133 | |
|
| 0.0789 | 3.0 | 1080 | 0.5157 | 0.6035 | 0.4439 | 0.4933 | 0.4934 | 110.1768 | |
|
| 0.0789 | 4.0 | 1440 | 0.5905 | 0.5873 | 0.4279 | 0.4781 | 0.4781 | 110.8343 | |
|
| 0.044 | 5.0 | 1800 | 0.5581 | 0.6046 | 0.4544 | 0.5023 | 0.502 | 110.8674 | |
|
| 0.0231 | 6.0 | 2160 | 0.5697 | 0.6086 | 0.4577 | 0.5072 | 0.5071 | 110.7293 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.15.0 |
|
- Tokenizers 0.15.0 |
|
|