2-BART-ToSSimplify / README.md
EE21's picture
End of training
606382e
|
raw
history blame
2.12 kB
---
license: mit
base_model: facebook/bart-large-cnn
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: 02_ToS-BART
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# 02_ToS-BART
This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co./facebook/bart-large-cnn) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5697
- Rouge1: 0.6086
- Rouge2: 0.4577
- Rougel: 0.5072
- Rougelsum: 0.5071
- Gen Len: 110.7293
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 6
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:--------:|
| No log | 1.0 | 360 | 0.5018 | 0.5957 | 0.44 | 0.4873 | 0.4876 | 110.8398 |
| 0.049 | 2.0 | 720 | 0.5468 | 0.5923 | 0.4364 | 0.4812 | 0.4813 | 111.6133 |
| 0.0789 | 3.0 | 1080 | 0.5157 | 0.6035 | 0.4439 | 0.4933 | 0.4934 | 110.1768 |
| 0.0789 | 4.0 | 1440 | 0.5905 | 0.5873 | 0.4279 | 0.4781 | 0.4781 | 110.8343 |
| 0.044 | 5.0 | 1800 | 0.5581 | 0.6046 | 0.4544 | 0.5023 | 0.502 | 110.8674 |
| 0.0231 | 6.0 | 2160 | 0.5697 | 0.6086 | 0.4577 | 0.5072 | 0.5071 | 110.7293 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0