metadata
language:
- vi
license: apache-2.0
base_model: openai/whisper-base
tags:
- generated_from_trainer
datasets:
- vivos
metrics:
- wer
model-index:
- name: Whisper Base Vi - Duy Ta
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Vivos
type: vivos
config: clean vivos
split: None
metrics:
- name: Wer
type: wer
value: 25.058275058275058
Whisper Base Vi - DuyTa
This model is a fine-tuned version of openai/whisper-base on the Vivos dataset. It achieves the following results on the evaluation set:
- Loss: 0.2565
- Wer: 25.0583
Model description
Finetune Whisper model on Vietnamese Dataset
Intended uses & limitations
More information needed
Training and evaluation data
Vivos
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.2096 | 1.37 | 1000 | 0.2949 | 32.0383 |
0.1205 | 2.74 | 2000 | 0.2548 | 26.8583 |
0.0767 | 4.12 | 3000 | 0.2549 | 25.3432 |
0.0532 | 5.49 | 4000 | 0.2565 | 25.0583 |
Framework versions
- Transformers 4.31.0.dev0
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3