vi_whisper / README.md
DuyTa's picture
.
6e8ac23
metadata
language:
  - vi
license: apache-2.0
base_model: openai/whisper-base
tags:
  - generated_from_trainer
datasets:
  - vivos
metrics:
  - wer
model-index:
  - name: Whisper Base Vi - Duy Ta
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Vivos
          type: vivos
          config: clean vivos
          split: None
        metrics:
          - name: Wer
            type: wer
            value: 25.058275058275058

Whisper Base Vi - DuyTa

This model is a fine-tuned version of openai/whisper-base on the Vivos dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2565
  • Wer: 25.0583

Model description

Finetune Whisper model on Vietnamese Dataset

Intended uses & limitations

More information needed

Training and evaluation data

Vivos

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000

Training results

Training Loss Epoch Step Validation Loss Wer
0.2096 1.37 1000 0.2949 32.0383
0.1205 2.74 2000 0.2548 26.8583
0.0767 4.12 3000 0.2549 25.3432
0.0532 5.49 4000 0.2565 25.0583

Framework versions

  • Transformers 4.31.0.dev0
  • Pytorch 2.0.1+cu117
  • Datasets 2.13.1
  • Tokenizers 0.13.3