Object Detection
Collection
7 items
•
Updated
This model is a fine-tuned version of hustvl/yolos-small.
This model is intended to demonstrate my ability to solve a complex problem using technology.
Dataset Source: https://huggingface.co./datasets/Francesco/liver-disease
Example Image
The following hyperparameters were used during training:
Metric Name | IoU | Area | maxDets | Metric Value |
---|---|---|---|---|
Average Precision (AP) | IoU=0.50:0.95 | area= all | maxDets=100 | 0.254 |
Average Precision (AP) | IoU=0.50 | area= all | maxDets=100 | 0.399 |
Average Precision (AP) | IoU=0.75 | area= all | maxDets=100 | 0.291 |
Average Precision (AP) | IoU=0.50:0.95 | area= small | maxDets=100 | 0.000 |
Average Precision (AP) | IoU=0.50:0.95 | area=medium | maxDets=100 | 0.154 |
Average Precision (AP) | IoU=0.50:0.95 | area= large | maxDets=100 | 0.283 |
Average Recall (AR) | IoU=0.50:0.95 | area= all | maxDets= 1 | 0.147 |
Average Recall (AR) | IoU=0.50:0.95 | area= all | maxDets= 10 | 0.451 |
Average Recall (AR) | IoU=0.50:0.95 | area= all | maxDets=100 | 0.552 |
Average Recall (AR) | IoU=0.50:0.95 | area= small | maxDets=100 | 0.000 |
Average Recall (AR) | IoU=0.50:0.95 | area=medium | maxDets=100 | 0.444 |
Average Recall (AR) | IoU=0.50:0.95 | area= large | maxDets=100 | 0.572 |
Base model
hustvl/yolos-small