DunnBC22's picture
Update README.md
419bb9f
metadata
license: apache-2.0
base_model: albert-base-v2
tags:
  - generated_from_trainer
  - URL
  - Security
metrics:
  - accuracy
  - recall
  - precision
  - f1
model-index:
  - name: albert-base-v2-Malicious_URLs
    results: []
pipeline_tag: text-classification

albert-base-v2-Malicious_URLs

This model is a fine-tuned version of albert-base-v2.

It achieves the following results on the evaluation set:

  • Loss: 0.8368
  • Accuracy: 0.7267
  • F1:
    • Weighted: 0.6482
    • Micro: 0.7267
    • Macro: 0.4521
  • Recall
    • Weighted: 0.7267
    • Micro: 0.7267
    • Macro: 0.4294
  • Precision
    • Weighted: 0.6262
    • Micro: 0.7267
    • Macro: 0.5508

Model description

For more information on how it was created, check out the following link: https://github.com/DunnBC22/NLP_Projects/blob/main/Multiclass%20Classification/Malicious%20URLs%20-%20ALBERT-Base_v2/Malicious%20URLs%20ALBERT-Base%20v2.ipynb

Intended uses & limitations

This model is intended to demonstrate my ability to solve a complex problem using technology.

Training and evaluation data

Dataset Source: https://www.kaggle.com/datasets/sid321axn/malicious-urls-dataset

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Accuracy Weighted F1 Micro F1 Macro F1 Weighted Recall Micro Recall Macro Recall Weighted Precision Micro Precision Macro Precision
0.7839 1.0 51087 0.8368 0.7267 0.6482 0.7267 0.4521 0.7267 0.7267 0.4294 0.6262 0.7267 0.5508

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.4
  • Tokenizers 0.13.3