DunnBC22's picture
Update README.md
419bb9f
|
raw
history blame
2.2 kB
---
license: apache-2.0
base_model: albert-base-v2
tags:
- generated_from_trainer
- URL
- Security
metrics:
- accuracy
- recall
- precision
- f1
model-index:
- name: albert-base-v2-Malicious_URLs
results: []
pipeline_tag: text-classification
---
# albert-base-v2-Malicious_URLs
This model is a fine-tuned version of [albert-base-v2](https://huggingface.co./albert-base-v2).
It achieves the following results on the evaluation set:
- Loss: 0.8368
- Accuracy: 0.7267
- F1:
- Weighted: 0.6482
- Micro: 0.7267
- Macro: 0.4521
- Recall
- Weighted: 0.7267
- Micro: 0.7267
- Macro: 0.4294
- Precision
- Weighted: 0.6262
- Micro: 0.7267
- Macro: 0.5508
## Model description
For more information on how it was created, check out the following link: https://github.com/DunnBC22/NLP_Projects/blob/main/Multiclass%20Classification/Malicious%20URLs%20-%20ALBERT-Base_v2/Malicious%20URLs%20ALBERT-Base%20v2.ipynb
## Intended uses & limitations
This model is intended to demonstrate my ability to solve a complex problem using technology.
## Training and evaluation data
Dataset Source: https://www.kaggle.com/datasets/sid321axn/malicious-urls-dataset
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted F1 | Micro F1 | Macro F1 | Weighted Recall | Micro Recall | Macro Recall | Weighted Precision | Micro Precision | Macro Precision |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:-----------:|:--------:|:--------:|:---------------:|:------------:|:------------:|:------------------:|:---------------:|:---------------:|
| 0.7839 | 1.0 | 51087 | 0.8368 | 0.7267 | 0.6482 | 0.7267 | 0.4521 | 0.7267 | 0.7267 | 0.4294 | 0.6262 | 0.7267 | 0.5508 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3