|
--- |
|
license: apache-2.0 |
|
base_model: albert-base-v2 |
|
tags: |
|
- generated_from_trainer |
|
- URL |
|
- Security |
|
metrics: |
|
- accuracy |
|
- recall |
|
- precision |
|
- f1 |
|
model-index: |
|
- name: albert-base-v2-Malicious_URLs |
|
results: [] |
|
pipeline_tag: text-classification |
|
--- |
|
|
|
# albert-base-v2-Malicious_URLs |
|
|
|
This model is a fine-tuned version of [albert-base-v2](https://huggingface.co./albert-base-v2). |
|
|
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.8368 |
|
- Accuracy: 0.7267 |
|
- F1: |
|
- Weighted: 0.6482 |
|
- Micro: 0.7267 |
|
- Macro: 0.4521 |
|
- Recall |
|
- Weighted: 0.7267 |
|
- Micro: 0.7267 |
|
- Macro: 0.4294 |
|
- Precision |
|
- Weighted: 0.6262 |
|
- Micro: 0.7267 |
|
- Macro: 0.5508 |
|
|
|
## Model description |
|
|
|
For more information on how it was created, check out the following link: https://github.com/DunnBC22/NLP_Projects/blob/main/Multiclass%20Classification/Malicious%20URLs%20-%20ALBERT-Base_v2/Malicious%20URLs%20ALBERT-Base%20v2.ipynb |
|
|
|
## Intended uses & limitations |
|
|
|
This model is intended to demonstrate my ability to solve a complex problem using technology. |
|
|
|
## Training and evaluation data |
|
|
|
Dataset Source: https://www.kaggle.com/datasets/sid321axn/malicious-urls-dataset |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 1 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted F1 | Micro F1 | Macro F1 | Weighted Recall | Micro Recall | Macro Recall | Weighted Precision | Micro Precision | Macro Precision | |
|
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:-----------:|:--------:|:--------:|:---------------:|:------------:|:------------:|:------------------:|:---------------:|:---------------:| |
|
| 0.7839 | 1.0 | 51087 | 0.8368 | 0.7267 | 0.6482 | 0.7267 | 0.4521 | 0.7267 | 0.7267 | 0.4294 | 0.6262 | 0.7267 | 0.5508 | |
|
|
|
### Framework versions |
|
|
|
- Transformers 4.31.0 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.14.4 |
|
- Tokenizers 0.13.3 |