metadata
language:
- sl
license: apache-2.0
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_8_0
- generated_from_trainer
- sl
- robust-speech-event
- model_for_talk
- hf-asr-leaderboard
datasets:
- mozilla-foundation/common_voice_8_0
model-index:
- name: wav2vec2-xls-r-sl-a2
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 8
type: mozilla-foundation/common_voice_8_0
args: sl
metrics:
- name: Test WER
type: wer
value: 0.21695212999560826
- name: Test CER
type: cer
value: 0.052850080572474256
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - Dev Data
type: speech-recognition-community-v2/dev_data
args: vot
metrics:
- name: Test WER
type: wer
value: 0.560722380639029
- name: Test CER
type: cer
value: 0.2279626093074681
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - Dev Data
type: speech-recognition-community-v2/dev_data
args: sl
metrics:
- name: Test WER
type: wer
value: 56.07
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - Test Data
type: speech-recognition-community-v2/eval_data
args: sl
metrics:
- name: Test WER
type: wer
value: 56.19
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - SL dataset. It achieves the following results on the evaluation set:
- Loss: 0.2855
- Wer: 0.2401
##Evaluation Commands
- To evaluate on mozilla-foundation/common_voice_8_0 with test split
python eval.py --model_id DrishtiSharma/wav2vec2-xls-r-sl-a2 --dataset mozilla-foundation/common_voice_8_0 --config sl --split test --log_outputs
- To evaluate on speech-recognition-community-v2/dev_data
Votic language not found in speech-recognition-community-v2/dev_data
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 100.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
6.9294 | 6.1 | 500 | 2.9712 | 1.0 |
2.8305 | 12.2 | 1000 | 1.7073 | 0.9479 |
1.4795 | 18.29 | 1500 | 0.5756 | 0.6397 |
1.3433 | 24.39 | 2000 | 0.4968 | 0.5424 |
1.1766 | 30.49 | 2500 | 0.4185 | 0.4743 |
1.0017 | 36.59 | 3000 | 0.3303 | 0.3578 |
0.9358 | 42.68 | 3500 | 0.3003 | 0.3051 |
0.8358 | 48.78 | 4000 | 0.3045 | 0.2884 |
0.7647 | 54.88 | 4500 | 0.2866 | 0.2677 |
0.7482 | 60.98 | 5000 | 0.2829 | 0.2585 |
0.6943 | 67.07 | 5500 | 0.2782 | 0.2478 |
0.6586 | 73.17 | 6000 | 0.2911 | 0.2537 |
0.6425 | 79.27 | 6500 | 0.2817 | 0.2462 |
0.6067 | 85.37 | 7000 | 0.2910 | 0.2436 |
0.5974 | 91.46 | 7500 | 0.2875 | 0.2430 |
0.5812 | 97.56 | 8000 | 0.2852 | 0.2396 |
Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2.dev0
- Tokenizers 0.11.0