metadata
language:
- pa-IN
license: apache-2.0
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_8_0
- generated_from_trainer
- pa-IN
- robust-speech-event
- hf-asr-leaderboard
datasets:
- mozilla-foundation/common_voice_8_0
model-index:
- name: wav2vec2-large-xls-r-300m-pa-IN-dx1
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 8
type: mozilla-foundation/common_voice_8_0
args: pa-IN
metrics:
- name: Test WER
type: wer
value: 0.48725989807918463
- name: Test CER
type: cer
value: 0.1687305197540224
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - Dev Data
type: speech-recognition-community-v2/dev_data
args: pa-IN
metrics:
- name: Test WER
type: wer
value: NA
- name: Test CER
type: cer
value: NA
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - PA-IN dataset. It achieves the following results on the evaluation set:
- Loss: 1.0855
- Wer: 0.4755
Evaluation Commands
- To evaluate on mozilla-foundation/common_voice_8_0 with test split
python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-pa-IN-dx1 --dataset mozilla-foundation/common_voice_8_0 --config pa-IN --split test --log_outputs
- To evaluate on speech-recognition-community-v2/dev_data
Punjabi language isn't available in speech-recognition-community-v2/dev_data
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1200
- num_epochs: 100.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
3.4607 | 9.26 | 500 | 2.7746 | 1.0416 |
0.3442 | 18.52 | 1000 | 0.9114 | 0.5911 |
0.2213 | 27.78 | 1500 | 0.9687 | 0.5751 |
0.1242 | 37.04 | 2000 | 1.0204 | 0.5461 |
0.0998 | 46.3 | 2500 | 1.0250 | 0.5233 |
0.0727 | 55.56 | 3000 | 1.1072 | 0.5382 |
0.0605 | 64.81 | 3500 | 1.0588 | 0.5073 |
0.0458 | 74.07 | 4000 | 1.0818 | 0.5069 |
0.0338 | 83.33 | 4500 | 1.0948 | 0.5108 |
0.0223 | 92.59 | 5000 | 1.0986 | 0.4775 |
Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2.dev0
- Tokenizers 0.11.0