|
--- |
|
language: |
|
- or |
|
license: apache-2.0 |
|
tags: |
|
- automatic-speech-recognition |
|
- generated_from_trainer |
|
- hf-asr-leaderboard |
|
- model_for_talk |
|
- mozilla-foundation/common_voice_8_0 |
|
- or |
|
- robust-speech-event |
|
datasets: |
|
- common_voice |
|
model-index: |
|
- name: wav2vec2-large-xls-r-300m-or-dx12 |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Common Voice 8 |
|
type: mozilla-foundation/common_voice_8_0 |
|
args: or |
|
metrics: |
|
- name: Test WER |
|
type: wer |
|
value: 0.5947242206235012 |
|
- name: Test CER |
|
type: cer |
|
value: 0.18272388876724327 |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Robust Speech Event - Dev Data |
|
type: speech-recognition-community-v2/dev_data |
|
args: or |
|
metrics: |
|
- name: Test WER |
|
type: wer |
|
value: NA |
|
- name: Test CER |
|
type: cer |
|
value: NA |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# wav2vec2-large-xls-r-300m-or-dx12 |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co./facebook/wav2vec2-xls-r-300m) on the common_voice dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.4638 |
|
- Wer: 0.5602 |
|
|
|
### Evaluation Commands |
|
|
|
1. To evaluate on mozilla-foundation/common_voice_8_0 with test split |
|
|
|
python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-or-dx12 --dataset mozilla-foundation/common_voice_8_0 --config or --split test --log_outputs |
|
|
|
2. To evaluate on speech-recognition-community-v2/dev_data |
|
|
|
Oriya language isn't available in speech-recognition-community-v2/dev_data |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0004 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 1000 |
|
- num_epochs: 200 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:------:|:----:|:---------------:|:------:| |
|
| 13.5059 | 4.17 | 100 | 10.3789 | 1.0 | |
|
| 4.5964 | 8.33 | 200 | 4.3294 | 1.0 | |
|
| 3.4448 | 12.5 | 300 | 3.7903 | 1.0 | |
|
| 3.3683 | 16.67 | 400 | 3.5289 | 1.0 | |
|
| 2.042 | 20.83 | 500 | 1.1531 | 0.7857 | |
|
| 0.5721 | 25.0 | 600 | 1.0267 | 0.7646 | |
|
| 0.3274 | 29.17 | 700 | 1.0773 | 0.6938 | |
|
| 0.2466 | 33.33 | 800 | 1.0323 | 0.6647 | |
|
| 0.2047 | 37.5 | 900 | 1.1255 | 0.6733 | |
|
| 0.1847 | 41.67 | 1000 | 1.1194 | 0.6515 | |
|
| 0.1453 | 45.83 | 1100 | 1.1215 | 0.6601 | |
|
| 0.1367 | 50.0 | 1200 | 1.1898 | 0.6627 | |
|
| 0.1334 | 54.17 | 1300 | 1.3082 | 0.6687 | |
|
| 0.1041 | 58.33 | 1400 | 1.2514 | 0.6177 | |
|
| 0.1024 | 62.5 | 1500 | 1.2055 | 0.6528 | |
|
| 0.0919 | 66.67 | 1600 | 1.4125 | 0.6369 | |
|
| 0.074 | 70.83 | 1700 | 1.4006 | 0.6634 | |
|
| 0.0681 | 75.0 | 1800 | 1.3943 | 0.6131 | |
|
| 0.0709 | 79.17 | 1900 | 1.3545 | 0.6296 | |
|
| 0.064 | 83.33 | 2000 | 1.2437 | 0.6237 | |
|
| 0.0552 | 87.5 | 2100 | 1.3762 | 0.6190 | |
|
| 0.056 | 91.67 | 2200 | 1.3763 | 0.6323 | |
|
| 0.0514 | 95.83 | 2300 | 1.2897 | 0.6164 | |
|
| 0.0409 | 100.0 | 2400 | 1.4257 | 0.6104 | |
|
| 0.0379 | 104.17 | 2500 | 1.4219 | 0.5853 | |
|
| 0.0367 | 108.33 | 2600 | 1.4361 | 0.6032 | |
|
| 0.0412 | 112.5 | 2700 | 1.4713 | 0.6098 | |
|
| 0.0353 | 116.67 | 2800 | 1.4132 | 0.6369 | |
|
| 0.0336 | 120.83 | 2900 | 1.5210 | 0.6098 | |
|
| 0.0302 | 125.0 | 3000 | 1.4686 | 0.5939 | |
|
| 0.0398 | 129.17 | 3100 | 1.5456 | 0.6204 | |
|
| 0.0291 | 133.33 | 3200 | 1.4111 | 0.5827 | |
|
| 0.0247 | 137.5 | 3300 | 1.3866 | 0.6151 | |
|
| 0.0196 | 141.67 | 3400 | 1.4513 | 0.5880 | |
|
| 0.0218 | 145.83 | 3500 | 1.5100 | 0.5899 | |
|
| 0.0196 | 150.0 | 3600 | 1.4936 | 0.5999 | |
|
| 0.0164 | 154.17 | 3700 | 1.5012 | 0.5701 | |
|
| 0.0168 | 158.33 | 3800 | 1.5601 | 0.5919 | |
|
| 0.0151 | 162.5 | 3900 | 1.4891 | 0.5761 | |
|
| 0.0137 | 166.67 | 4000 | 1.4839 | 0.5800 | |
|
| 0.0143 | 170.83 | 4100 | 1.4826 | 0.5754 | |
|
| 0.0114 | 175.0 | 4200 | 1.4950 | 0.5708 | |
|
| 0.0092 | 179.17 | 4300 | 1.5008 | 0.5694 | |
|
| 0.0104 | 183.33 | 4400 | 1.4774 | 0.5728 | |
|
| 0.0096 | 187.5 | 4500 | 1.4948 | 0.5767 | |
|
| 0.0105 | 191.67 | 4600 | 1.4557 | 0.5694 | |
|
| 0.009 | 195.83 | 4700 | 1.4615 | 0.5628 | |
|
| 0.0081 | 200.0 | 4800 | 1.4638 | 0.5602 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.16.2 |
|
- Pytorch 1.10.0+cu111 |
|
- Datasets 1.18.3 |
|
- Tokenizers 0.11.0 |
|
|