DrishtiSharma's picture
Update README.md
bff60de
|
raw
history blame
5.45 kB
metadata
language:
  - or
license: apache-2.0
tags:
  - automatic-speech-recognition
  - mozilla-foundation/common_voice_8_0
  - generated_from_trainer
  - or
  - robust-speech-event
  - model_for_talk
datasets:
  - common_voice
model-index:
  - name: wav2vec2-large-xls-r-300m-or-dx12
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 8
          type: mozilla-foundation/common_voice_8_0
          args: or
        metrics:
          - name: Test WER
            type: wer
            value: 0.5947242206235012
          - name: Test CER
            type: cer
            value: 0.18272388876724327
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Robust Speech Event - Dev Data
          type: speech-recognition-community-v2/dev_data
          args: or
        metrics:
          - name: Test WER
            type: wer
            value: NA
          - name: Test CER
            type: cer
            value: NA

wav2vec2-large-xls-r-300m-or-dx12

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4638
  • Wer: 0.5602

Evaluation Commands

  1. To evaluate on mozilla-foundation/common_voice_8_0 with test split

python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-or-dx12 --dataset mozilla-foundation/common_voice_8_0 --config or --split test --log_outputs

  1. To evaluate on speech-recognition-community-v2/dev_data

Oriya language isn't available in speech-recognition-community-v2/dev_data

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0004
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 200
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
13.5059 4.17 100 10.3789 1.0
4.5964 8.33 200 4.3294 1.0
3.4448 12.5 300 3.7903 1.0
3.3683 16.67 400 3.5289 1.0
2.042 20.83 500 1.1531 0.7857
0.5721 25.0 600 1.0267 0.7646
0.3274 29.17 700 1.0773 0.6938
0.2466 33.33 800 1.0323 0.6647
0.2047 37.5 900 1.1255 0.6733
0.1847 41.67 1000 1.1194 0.6515
0.1453 45.83 1100 1.1215 0.6601
0.1367 50.0 1200 1.1898 0.6627
0.1334 54.17 1300 1.3082 0.6687
0.1041 58.33 1400 1.2514 0.6177
0.1024 62.5 1500 1.2055 0.6528
0.0919 66.67 1600 1.4125 0.6369
0.074 70.83 1700 1.4006 0.6634
0.0681 75.0 1800 1.3943 0.6131
0.0709 79.17 1900 1.3545 0.6296
0.064 83.33 2000 1.2437 0.6237
0.0552 87.5 2100 1.3762 0.6190
0.056 91.67 2200 1.3763 0.6323
0.0514 95.83 2300 1.2897 0.6164
0.0409 100.0 2400 1.4257 0.6104
0.0379 104.17 2500 1.4219 0.5853
0.0367 108.33 2600 1.4361 0.6032
0.0412 112.5 2700 1.4713 0.6098
0.0353 116.67 2800 1.4132 0.6369
0.0336 120.83 2900 1.5210 0.6098
0.0302 125.0 3000 1.4686 0.5939
0.0398 129.17 3100 1.5456 0.6204
0.0291 133.33 3200 1.4111 0.5827
0.0247 137.5 3300 1.3866 0.6151
0.0196 141.67 3400 1.4513 0.5880
0.0218 145.83 3500 1.5100 0.5899
0.0196 150.0 3600 1.4936 0.5999
0.0164 154.17 3700 1.5012 0.5701
0.0168 158.33 3800 1.5601 0.5919
0.0151 162.5 3900 1.4891 0.5761
0.0137 166.67 4000 1.4839 0.5800
0.0143 170.83 4100 1.4826 0.5754
0.0114 175.0 4200 1.4950 0.5708
0.0092 179.17 4300 1.5008 0.5694
0.0104 183.33 4400 1.4774 0.5728
0.0096 187.5 4500 1.4948 0.5767
0.0105 191.67 4600 1.4557 0.5694
0.009 195.83 4700 1.4615 0.5628
0.0081 200.0 4800 1.4638 0.5602

Framework versions

  • Transformers 4.16.2
  • Pytorch 1.10.0+cu111
  • Datasets 1.18.3
  • Tokenizers 0.11.0