metadata
language:
- or
license: apache-2.0
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_8_0
- generated_from_trainer
- or
- robust-speech-event
- model_for_talk
datasets:
- common_voice
model-index:
- name: wav2vec2-large-xls-r-300m-or-dx12
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 8
type: mozilla-foundation/common_voice_8_0
args: or
metrics:
- name: Test WER
type: wer
value: 0.5947242206235012
- name: Test CER
type: cer
value: 0.18272388876724327
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - Dev Data
type: speech-recognition-community-v2/dev_data
args: or
metrics:
- name: Test WER
type: wer
value: NA
- name: Test CER
type: cer
value: NA
wav2vec2-large-xls-r-300m-or-dx12
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice dataset. It achieves the following results on the evaluation set:
- Loss: 1.4638
- Wer: 0.5602
Evaluation Commands
- To evaluate on mozilla-foundation/common_voice_8_0 with test split
python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-or-dx12 --dataset mozilla-foundation/common_voice_8_0 --config or --split test --log_outputs
- To evaluate on speech-recognition-community-v2/dev_data
Oriya language isn't available in speech-recognition-community-v2/dev_data
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0004
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 200
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
13.5059 | 4.17 | 100 | 10.3789 | 1.0 |
4.5964 | 8.33 | 200 | 4.3294 | 1.0 |
3.4448 | 12.5 | 300 | 3.7903 | 1.0 |
3.3683 | 16.67 | 400 | 3.5289 | 1.0 |
2.042 | 20.83 | 500 | 1.1531 | 0.7857 |
0.5721 | 25.0 | 600 | 1.0267 | 0.7646 |
0.3274 | 29.17 | 700 | 1.0773 | 0.6938 |
0.2466 | 33.33 | 800 | 1.0323 | 0.6647 |
0.2047 | 37.5 | 900 | 1.1255 | 0.6733 |
0.1847 | 41.67 | 1000 | 1.1194 | 0.6515 |
0.1453 | 45.83 | 1100 | 1.1215 | 0.6601 |
0.1367 | 50.0 | 1200 | 1.1898 | 0.6627 |
0.1334 | 54.17 | 1300 | 1.3082 | 0.6687 |
0.1041 | 58.33 | 1400 | 1.2514 | 0.6177 |
0.1024 | 62.5 | 1500 | 1.2055 | 0.6528 |
0.0919 | 66.67 | 1600 | 1.4125 | 0.6369 |
0.074 | 70.83 | 1700 | 1.4006 | 0.6634 |
0.0681 | 75.0 | 1800 | 1.3943 | 0.6131 |
0.0709 | 79.17 | 1900 | 1.3545 | 0.6296 |
0.064 | 83.33 | 2000 | 1.2437 | 0.6237 |
0.0552 | 87.5 | 2100 | 1.3762 | 0.6190 |
0.056 | 91.67 | 2200 | 1.3763 | 0.6323 |
0.0514 | 95.83 | 2300 | 1.2897 | 0.6164 |
0.0409 | 100.0 | 2400 | 1.4257 | 0.6104 |
0.0379 | 104.17 | 2500 | 1.4219 | 0.5853 |
0.0367 | 108.33 | 2600 | 1.4361 | 0.6032 |
0.0412 | 112.5 | 2700 | 1.4713 | 0.6098 |
0.0353 | 116.67 | 2800 | 1.4132 | 0.6369 |
0.0336 | 120.83 | 2900 | 1.5210 | 0.6098 |
0.0302 | 125.0 | 3000 | 1.4686 | 0.5939 |
0.0398 | 129.17 | 3100 | 1.5456 | 0.6204 |
0.0291 | 133.33 | 3200 | 1.4111 | 0.5827 |
0.0247 | 137.5 | 3300 | 1.3866 | 0.6151 |
0.0196 | 141.67 | 3400 | 1.4513 | 0.5880 |
0.0218 | 145.83 | 3500 | 1.5100 | 0.5899 |
0.0196 | 150.0 | 3600 | 1.4936 | 0.5999 |
0.0164 | 154.17 | 3700 | 1.5012 | 0.5701 |
0.0168 | 158.33 | 3800 | 1.5601 | 0.5919 |
0.0151 | 162.5 | 3900 | 1.4891 | 0.5761 |
0.0137 | 166.67 | 4000 | 1.4839 | 0.5800 |
0.0143 | 170.83 | 4100 | 1.4826 | 0.5754 |
0.0114 | 175.0 | 4200 | 1.4950 | 0.5708 |
0.0092 | 179.17 | 4300 | 1.5008 | 0.5694 |
0.0104 | 183.33 | 4400 | 1.4774 | 0.5728 |
0.0096 | 187.5 | 4500 | 1.4948 | 0.5767 |
0.0105 | 191.67 | 4600 | 1.4557 | 0.5694 |
0.009 | 195.83 | 4700 | 1.4615 | 0.5628 |
0.0081 | 200.0 | 4800 | 1.4638 | 0.5602 |
Framework versions
- Transformers 4.16.2
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.11.0