Edit model card

llama-2-7b-flash-attention2-lora-patent-classification

This model is a fine-tuned version of NousResearch/Llama-2-7b-hf on the patent-classification dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5598
  • Accuracy: 0.436
  • Precision Macro: 0.4276
  • Recall Macro: 0.3658
  • F1-score Macro: 0.3707

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Macro Recall Macro F1-score Macro
1.4059 1.0 6250 1.9046 0.3748 0.3815 0.3173 0.3012
1.1153 2.0 12500 1.6457 0.419 0.4162 0.3461 0.3466
1.0234 3.0 18750 1.5598 0.436 0.4276 0.3658 0.3707

Framework versions

  • PEFT 0.7.2.dev0
  • Transformers 4.37.0.dev0
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.2.dev0
  • Tokenizers 0.15.0
Downloads last month
7
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for DrishtiSharma/llama-2-7b-flash-attention2-lora-patent-classification

Adapter
(136)
this model