File size: 35,501 Bytes
73b4039
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:22291
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-small-en
widget:
- source_sentence: What rights and obligations does an Authorised Person have if a
    storage facility holding Accepted Spot Commodities becomes insolvent?
  sentences:
  - "MTF (using Virtual Assets): using third-party issued fiat tokens as a payment/transaction\
    \ mechanism:\n\ni.\tIn the context of using third party fiat tokens, the Authorised\
    \ Person must directly meet the requirements of the Accepted Virtual Assets, Technology\
    \ Governance and AML/CFT sections of this Guidance.\n\nii.\tFor the related fiat\
    \ currency custody activities, FSRA preference is to have the MTF utilise a Virtual\
    \ Asset/Fiat Custodian authorised on the basis of paragraphs 139 - 145 or 166(b)\
    \ above.\n\niii.\tIn relation to the issuance of the related fiat token, in circumstances\
    \ where the issuer is not authorised under paragraph 166(a) above, it is expected\
    \ that the Authorised Person undertake the same due diligence as that it would\
    \ apply for the purposes of determining Accepted Virtual Assets (focusing on Technology\
    \ Governance requirements, the seven factors used to determine an Accepted Virtual\
    \ Asset, and requirements relating to reporting and reconciliation).\n"
  - 'Valuation adjustments. The Regulator expects the following valuation adjustments
    to be formally considered at a minimum: unearned credit spreads, close out costs,
    Operational Risks, early termination, investing and funding costs, and future
    administrative costs and, where appropriate, model risk.

    '
  - "Storage Facilities. An Authorised Person must have arrangements in place for\
    \ the approval, management, monitoring and control for Accepted Spot Commodities\
    \ and the storage facilities operated by itself or by third parties, including\
    \ in relation to:\n(a)\tsecurity arrangements;\n(b)\tperiodic stock reports;\n\
    (c)\tperiodic inventory audits;\n(d)\tdispute resolution procedures where the\
    \ storage facility materially fails to meet any of its obligations to the title\
    \ holder;\n(e)\tstorage or other fees; and\n(f)\trights and obligations in the\
    \ event of storage facility insolvency, as per the rules, terms, conditions and\
    \ other obligations of the Authorised Person."
- source_sentence: Regarding GEN Rule 3.3, can you provide examples of what constitutes
    effective and responsible management of an Authorised Person's affairs in the
    context of Virtual Assets?
  sentences:
  - 'REGULATORY REQUIREMENTS - SPOT COMMODITY ACTIVITIES

    Custody

    Due to their psychical nature, Spot Commodities may require specialist Custody
    arrangements, with the holding of Accepted Spot Commodities introducing additional
    operational risks.  For example, the safekeeping of gold bullion would require
    a custodian with appropriate secure vault facilities.

    '
  - "Measurement of E for pre settlement Counterparty Exposures arising from SFTs.\
    \ An Authorised Person must determine E, for a pre settlement Counterparty Exposure\
    \ arising from an SFT which is not covered by a qualifying cross product Netting\
    \ agreement as follows:\n(a)\tin the case where the Authorised Person has lent\
    \ Securities to a Counterparty or sold Securities to a Counterparty with a commitment\
    \ to repurchase those Securities at a specified price on a specified future date,\
    \ the latest fair value of the Securities lent or sold; and\n(b)\tin the case\
    \ where the Authorised Person has lent cash to a Counterparty through the borrowing\
    \ of Securities from the Counterparty or paid cash for the purchase of Securities\
    \ from a Counterparty with a commitment to resell those Securities at a specified\
    \ price on a specified future date, the amount of cash lent or paid."
  - "The base figure for the size factor component is determined by aggregating the\
    \ following components, for the Long Term Insurance Fund:\n(a)\tthe default risk\
    \ components determined in accordance with Rule ‎A8.4;\n(b)\tthe investment volatility\
    \ risk component determined in accordance with Rule ‎A8.5; and\n(c)\tthe concentration\
    \ risk component determined in accordance with Rule ‎A8.8."
- source_sentence: In the case of non-compliance with Part 17 of FSMR, what are the
    typical steps or actions the ADGM might take against an authorised firm?
  sentences:
  - 'The Regulatory Authority shall, within thirty (30) days of the date of the notification
    mentioned in subparagraph (2), notify the Account Holder or the Controlling Person
    of the violation, the amount of the fine and the payment request of the fine within
    no later than thirty (30) days from receipt of the notice.

    '
  - "When employing an eKYC System to assist with CDD, a Relevant Person should:\n\
    a.\tensure that it has a thorough understanding of the eKYC System itself and\
    \ the risks of eKYC, including those outlined by relevant guidance from FATF and\
    \ other international standard setting bodies;\nb.\tcomply with all the Rules\
    \ of the Regulator relevant to eKYC including, but not limited to, applicable\
    \ requirements regarding the business risk assessment, as per Rule ‎6.1, and outsourcing,\
    \ as per Rule ‎9.3;\nc.\tcombine eKYC with transaction monitoring, anti-fraud\
    \ and cyber-security measures to support a wider framework preventing applicable\
    \ Financial Crime; and\nd.\ttake appropriate steps to identify, assess and mitigate\
    \ the risk of the eKYC system being misused for the purposes of Financial Crime."
  - This Chapter deals with the regulatory requirements arising out of the need for
    Authorised Persons to carry out a self assessment of their risk which can be reviewed
    and assessed by the Regulator. This Chapter details the Rules stipulating the
    need to complete internal risk assessments by Authorised Persons in defined frequencies
    and the Regulator's role in reviewing the results of such assessments. In the
    case of Authorised Persons facing financial risks, the requirements in this Chapter
    mandate completion of an Internal Capital Adequacy Assessment Process. The Regulator
    will review the results of such internal risk assessments. This Chapter also sets
    out how the Regulator may impose an additional Capital Requirement on a firm specific
    basis in addition to the minimum requirement specified in Chapter 3 of these Rules
    to address higher-than-normal risk.
- source_sentence: In terms of basis risk, are there any preferred methods or models
    that the ADGM recommends for assessing the impact of divergences in market rates,
    such as the prime rate versus deposit and benchmark rates?
  sentences:
  - "In performing its functions and exercising its powers, the Regulator shall pursue\
    \ the following objectives—\n(a)\tto foster and maintain fairness, transparency\
    \ and efficiency in the Abu Dhabi Global Market;\n(b)\tto foster and maintain\
    \ confidence in the Abu Dhabi Global Market;\n(c)\tto ensure that the financial\
    \ markets in the Abu Dhabi Global Market are supported by safe and efficient infrastructure;\n\
    (d)\tto foster and maintain financial stability in the Abu Dhabi Global Market,\
    \ including the reduction of systemic risk;\n(e)\tto promote and enhance the integrity\
    \ of the Abu Dhabi Global Market Financial System;\n(f)\tto prevent, detect and\
    \ restrain conduct that causes or may cause damage to the reputation of the Abu\
    \ Dhabi Global Market through appropriate means including the imposition of sanctions;\n\
    (g)\tto secure an appropriate degree of protection for direct and indirect users,\
    \ and prospective users of the Abu Dhabi Global Market;\n(h)\tto promote public\
    \ understanding of the regulation of the Abu Dhabi Global Market;\n(i)\tto further\
    \ the interests of the Abu Dhabi Global Market;\n(j)\tto promote the safety and\
    \ soundness of Authorised Persons and Recognised Bodies; and\n(k)\tto pursue any\
    \ other objectives as the Board may set."
  - Two-year validity period. During the two-year validity period, the Regulator will
    engage with and support the FinTech Participant and ensure the FinTech Participant
    operates within the parameters as set and agreed to prior to the grant of the
    FSP.
  - "Without limiting compliance with Rules ‎6.1.1 and ‎6.1.2, prior to launching\
    \ any new product, service, or business practice, or using a new or developing\
    \ technology, a Relevant Person must take reasonable steps to ensure that it has:\n\
    (a)\tassessed and identified the money laundering risks relating to the product,\
    \ service, business practice or technology; and\n(b)\ttaken appropriate steps\
    \ to mitigate or eliminate the risks identified under (a)."
- source_sentence: How should an Authorised Person document and justify any deviations
    when mapping activities into business lines for Operational Risk capital purposes,
    particularly when they differ from regulatory capital calculations in other risk
    categories?
  sentences:
  - "For the purposes of ‎8.1.2(1), in determining when it is appropriate to apply\
    \ CDD measures in relation to existing customers, a Relevant Person must take\
    \ into account, amongst other things:\n(a)\tany indication that the identity of\
    \ the customer, or the customer’s Beneficial Owners, has changed;\n(b)\tany Transactions\
    \ that are not reasonably consistent with the Relevant Person’s knowledge of the\
    \ customer;\n(c)\tany change in the purpose or intended nature of the Relevant\
    \ Person’s relationship with the customer; or\n(d)\tany other matter that might\
    \ affect the Relevant Person’s risk assessment of the customer."
  - Principles for business line mapping. The mapping of activities into business
    lines for Operational Risk capital purposes should be consistent with the definitions
    of business lines used for regulatory capital calculations in other risk categories,
    i.e. credit and Market Risk. Any deviations from this principle should be clearly
    motivated and documented.
  - 'REGULATORY REQUIREMENTS FOR AUTHORISED PERSONS ENGAGED IN REGULATED ACTIVITIES
    IN RELATION TO VIRTUAL ASSETS

    Planned and Unplanned system outages

    Authorised Persons should have a programme of planned systems outages to provide
    for adequate opportunities to perform updates and testing. Authorised Persons
    should also have multiple communication channels to ensure that its Clients are
    informed, ahead of time, of any outages which may affect them.

    '
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
model-index:
- name: SentenceTransformer based on BAAI/bge-small-en
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: Unknown
      type: unknown
    metrics:
    - type: cosine_accuracy@1
      value: 0.6255380200860832
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.7517934002869441
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.793400286944046
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.8368005738880918
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.6255380200860832
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.26410808225729315
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.1703012912482066
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09314921090387374
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.5488103778096605
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.670468675274988
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.7117168818747011
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.7628347680535629
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.6800021713111875
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.6975649609437263
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.6393436933673565
      name: Cosine Map@100
    - type: dot_accuracy@1
      value: 0.6255380200860832
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.7517934002869441
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.793400286944046
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.8368005738880918
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.6255380200860832
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.26410808225729315
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.1703012912482066
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.09314921090387374
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.5488103778096605
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.670468675274988
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.7117168818747011
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.7628347680535629
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.6800021713111875
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.6975649609437263
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.6393436933673565
      name: Dot Map@100
---

# SentenceTransformer based on BAAI/bge-small-en

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-small-en](https://huggingface.co./BAAI/bge-small-en). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-small-en](https://huggingface.co./BAAI/bge-small-en) <!-- at revision 2275a7bdee235e9b4f01fa73aa60d3311983cfea -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 384 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co./models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("DrishtiSharma/bge-small-en-obliqa-5-epochs")
# Run inference
sentences = [
    'How should an Authorised Person document and justify any deviations when mapping activities into business lines for Operational Risk capital purposes, particularly when they differ from regulatory capital calculations in other risk categories?',
    'Principles for business line mapping. The mapping of activities into business lines for Operational Risk capital purposes should be consistent with the definitions of business lines used for regulatory capital calculations in other risk categories, i.e. credit and Market Risk. Any deviations from this principle should be clearly motivated and documented.',
    'REGULATORY REQUIREMENTS FOR AUTHORISED PERSONS ENGAGED IN REGULATED ACTIVITIES IN RELATION TO VIRTUAL ASSETS\nPlanned and Unplanned system outages\nAuthorised Persons should have a programme of planned systems outages to provide for adequate opportunities to perform updates and testing. Authorised Persons should also have multiple communication channels to ensure that its Clients are informed, ahead of time, of any outages which may affect them.\n',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval

* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.6255     |
| cosine_accuracy@3   | 0.7518     |
| cosine_accuracy@5   | 0.7934     |
| cosine_accuracy@10  | 0.8368     |
| cosine_precision@1  | 0.6255     |
| cosine_precision@3  | 0.2641     |
| cosine_precision@5  | 0.1703     |
| cosine_precision@10 | 0.0931     |
| cosine_recall@1     | 0.5488     |
| cosine_recall@3     | 0.6705     |
| cosine_recall@5     | 0.7117     |
| cosine_recall@10    | 0.7628     |
| cosine_ndcg@10      | 0.68       |
| cosine_mrr@10       | 0.6976     |
| **cosine_map@100**  | **0.6393** |
| dot_accuracy@1      | 0.6255     |
| dot_accuracy@3      | 0.7518     |
| dot_accuracy@5      | 0.7934     |
| dot_accuracy@10     | 0.8368     |
| dot_precision@1     | 0.6255     |
| dot_precision@3     | 0.2641     |
| dot_precision@5     | 0.1703     |
| dot_precision@10    | 0.0931     |
| dot_recall@1        | 0.5488     |
| dot_recall@3        | 0.6705     |
| dot_recall@5        | 0.7117     |
| dot_recall@10       | 0.7628     |
| dot_ndcg@10         | 0.68       |
| dot_mrr@10          | 0.6976     |
| dot_map@100         | 0.6393     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 22,291 training samples
* Columns: <code>sentence_0</code> and <code>sentence_1</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence_0                                                                         | sentence_1                                                                           |
  |:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                               |
  | details | <ul><li>min: 14 tokens</li><li>mean: 34.77 tokens</li><li>max: 68 tokens</li></ul> | <ul><li>min: 12 tokens</li><li>mean: 113.08 tokens</li><li>max: 369 tokens</li></ul> |
* Samples:
  | sentence_0                                                                                                                                                                                                                  | sentence_1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
  |:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>Could you outline the process for obtaining an ADGM Green Fund Designation or an ADGM Climate Transition Fund Designation, and what are the ongoing compliance obligations associated with these designations?</code> | <code>AUTHORISED PERSONS CONDUCTING A REGULATED ACTIVITY IN RELATION TO VIRTUAL ASSETS – EXTENSION INTO TO DIGITAL SECURITIES ACTIVITIES<br>MTFs using Virtual Assets – Becoming a Digital Securities RIE<br>Migration of a Virtual Assets MTF to a RIE is more complex than the extension of a Virtual Assets MTF into Digital Securities (as dealt with in paragraphs 63 - 67 above).  This is due to a number of factors, including that a RIE is required to meet the full suite of requirements in Chapters 2 and 3 of MIR, and the primary market considerations associated with operating a RIE (e.g., requirement for Approved Prospectuses, admission to the Official List of Securities, and the ongoing technical/operational and regulatory requirements related to Digital Securities being admitted to trading and admitted to the Official List).<br></code> |
  | <code>Can the ADGM provide examples of effective internal risk control and reporting mechanisms that ensure an accurate assessment of a Reporting Entity's financial position and prospects, as per Rule 9.2.8?</code>      | <code>Risk control. Authorised Persons should recognise and control the Credit Risk arising from their new products and services. Well in advance of entering into business transactions involving new types of products and activities, they should ensure that they understand the risks fully and have established appropriate Credit Risk policies, procedures and controls, which should be approved by the Governing Body or its appropriate delegated committee. A formal risk assessment of new products and activities should also be performed and documented.</code>                                                                                                                                                                                                                                                                                             |
  | <code>What are the specific criteria used by the FSRA to determine whether a company's ESG disclosures align with a globally recognized standard?</code>                                                                    | <code>The Regulator may refuse to grant an application for an ADGM Green Bond Designation or an ADGM Sustainability-Linked Bond Designation if it is not satisfied that the requirements of this section have been met or will be met on an ongoing basis.<br></code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim"
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 10
- `per_device_eval_batch_size`: 10
- `num_train_epochs`: 5
- `multi_dataset_batch_sampler`: round_robin

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 10
- `per_device_eval_batch_size`: 10
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 5
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin

</details>

### Training Logs
| Epoch  | Step  | Training Loss | cosine_map@100 |
|:------:|:-----:|:-------------:|:--------------:|
| 0.0897 | 200   | -             | 0.5994         |
| 0.1794 | 400   | -             | 0.6027         |
| 0.2242 | 500   | 0.925         | -              |
| 0.2691 | 600   | -             | 0.6053         |
| 0.3587 | 800   | -             | 0.6123         |
| 0.4484 | 1000  | 0.5995        | 0.5981         |
| 0.5381 | 1200  | -             | 0.6230         |
| 0.6278 | 1400  | -             | 0.6236         |
| 0.6726 | 1500  | 0.5963        | -              |
| 0.7175 | 1600  | -             | 0.6082         |
| 0.8072 | 1800  | -             | 0.6192         |
| 0.8969 | 2000  | 0.5078        | 0.6128         |
| 0.9865 | 2200  | -             | 0.6159         |
| 1.0    | 2230  | -             | 0.6235         |
| 1.0762 | 2400  | -             | 0.6232         |
| 1.1211 | 2500  | 0.4599        | -              |
| 1.1659 | 2600  | -             | 0.6122         |
| 1.2556 | 2800  | -             | 0.6242         |
| 1.3453 | 3000  | 0.4054        | 0.6246         |
| 1.4350 | 3200  | -             | 0.6364         |
| 1.5247 | 3400  | -             | 0.6260         |
| 1.5695 | 3500  | 0.4197        | -              |
| 1.6143 | 3600  | -             | 0.6230         |
| 1.7040 | 3800  | -             | 0.6324         |
| 1.7937 | 4000  | 0.3896        | 0.6384         |
| 1.8834 | 4200  | -             | 0.6346         |
| 1.9731 | 4400  | -             | 0.6279         |
| 2.0    | 4460  | -             | 0.6296         |
| 2.0179 | 4500  | 0.3875        | -              |
| 2.0628 | 4600  | -             | 0.6263         |
| 2.1525 | 4800  | -             | 0.6326         |
| 2.2422 | 5000  | 0.3117        | 0.6306         |
| 2.3318 | 5200  | -             | 0.6351         |
| 2.4215 | 5400  | -             | 0.6330         |
| 2.4664 | 5500  | 0.3327        | -              |
| 2.5112 | 5600  | -             | 0.6355         |
| 2.6009 | 5800  | -             | 0.6323         |
| 2.6906 | 6000  | 0.3017        | 0.6249         |
| 2.7803 | 6200  | -             | 0.6324         |
| 2.8700 | 6400  | -             | 0.6326         |
| 2.9148 | 6500  | 0.2971        | -              |
| 2.9596 | 6600  | -             | 0.6306         |
| 3.0    | 6690  | -             | 0.6368         |
| 3.0493 | 6800  | -             | 0.6351         |
| 3.1390 | 7000  | 0.2755        | 0.6308         |
| 3.2287 | 7200  | -             | 0.6372         |
| 3.3184 | 7400  | -             | 0.6390         |
| 3.3632 | 7500  | 0.2639        | -              |
| 3.4081 | 7600  | -             | 0.6326         |
| 3.4978 | 7800  | -             | 0.6351         |
| 3.5874 | 8000  | 0.2474        | 0.6377         |
| 3.6771 | 8200  | -             | 0.6375         |
| 3.7668 | 8400  | -             | 0.6380         |
| 3.8117 | 8500  | 0.2402        | -              |
| 3.8565 | 8600  | -             | 0.6407         |
| 3.9462 | 8800  | -             | 0.6401         |
| 4.0    | 8920  | -             | 0.6433         |
| 4.0359 | 9000  | 0.2628        | 0.6452         |
| 4.1256 | 9200  | -             | 0.6432         |
| 4.2152 | 9400  | -             | 0.6426         |
| 4.2601 | 9500  | 0.2318        | -              |
| 4.3049 | 9600  | -             | 0.6404         |
| 4.3946 | 9800  | -             | 0.6390         |
| 4.4843 | 10000 | 0.2246        | 0.6389         |
| 4.5740 | 10200 | -             | 0.6394         |
| 4.6637 | 10400 | -             | 0.6388         |
| 4.7085 | 10500 | 0.2054        | -              |
| 4.7534 | 10600 | -             | 0.6396         |
| 4.8430 | 10800 | -             | 0.6389         |
| 4.9327 | 11000 | 0.2194        | 0.6394         |
| 5.0    | 11150 | -             | 0.6393         |


### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.1
- Transformers: 4.45.2
- PyTorch: 2.5.1+cu121
- Accelerate: 1.2.0.dev0
- Datasets: 3.1.0
- Tokenizers: 0.20.3

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->