File size: 35,501 Bytes
73b4039 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 |
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:22291
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-small-en
widget:
- source_sentence: What rights and obligations does an Authorised Person have if a
storage facility holding Accepted Spot Commodities becomes insolvent?
sentences:
- "MTF (using Virtual Assets): using third-party issued fiat tokens as a payment/transaction\
\ mechanism:\n\ni.\tIn the context of using third party fiat tokens, the Authorised\
\ Person must directly meet the requirements of the Accepted Virtual Assets, Technology\
\ Governance and AML/CFT sections of this Guidance.\n\nii.\tFor the related fiat\
\ currency custody activities, FSRA preference is to have the MTF utilise a Virtual\
\ Asset/Fiat Custodian authorised on the basis of paragraphs 139 - 145 or 166(b)\
\ above.\n\niii.\tIn relation to the issuance of the related fiat token, in circumstances\
\ where the issuer is not authorised under paragraph 166(a) above, it is expected\
\ that the Authorised Person undertake the same due diligence as that it would\
\ apply for the purposes of determining Accepted Virtual Assets (focusing on Technology\
\ Governance requirements, the seven factors used to determine an Accepted Virtual\
\ Asset, and requirements relating to reporting and reconciliation).\n"
- 'Valuation adjustments. The Regulator expects the following valuation adjustments
to be formally considered at a minimum: unearned credit spreads, close out costs,
Operational Risks, early termination, investing and funding costs, and future
administrative costs and, where appropriate, model risk.
'
- "Storage Facilities. An Authorised Person must have arrangements in place for\
\ the approval, management, monitoring and control for Accepted Spot Commodities\
\ and the storage facilities operated by itself or by third parties, including\
\ in relation to:\n(a)\tsecurity arrangements;\n(b)\tperiodic stock reports;\n\
(c)\tperiodic inventory audits;\n(d)\tdispute resolution procedures where the\
\ storage facility materially fails to meet any of its obligations to the title\
\ holder;\n(e)\tstorage or other fees; and\n(f)\trights and obligations in the\
\ event of storage facility insolvency, as per the rules, terms, conditions and\
\ other obligations of the Authorised Person."
- source_sentence: Regarding GEN Rule 3.3, can you provide examples of what constitutes
effective and responsible management of an Authorised Person's affairs in the
context of Virtual Assets?
sentences:
- 'REGULATORY REQUIREMENTS - SPOT COMMODITY ACTIVITIES
Custody
Due to their psychical nature, Spot Commodities may require specialist Custody
arrangements, with the holding of Accepted Spot Commodities introducing additional
operational risks. For example, the safekeeping of gold bullion would require
a custodian with appropriate secure vault facilities.
'
- "Measurement of E for pre settlement Counterparty Exposures arising from SFTs.\
\ An Authorised Person must determine E, for a pre settlement Counterparty Exposure\
\ arising from an SFT which is not covered by a qualifying cross product Netting\
\ agreement as follows:\n(a)\tin the case where the Authorised Person has lent\
\ Securities to a Counterparty or sold Securities to a Counterparty with a commitment\
\ to repurchase those Securities at a specified price on a specified future date,\
\ the latest fair value of the Securities lent or sold; and\n(b)\tin the case\
\ where the Authorised Person has lent cash to a Counterparty through the borrowing\
\ of Securities from the Counterparty or paid cash for the purchase of Securities\
\ from a Counterparty with a commitment to resell those Securities at a specified\
\ price on a specified future date, the amount of cash lent or paid."
- "The base figure for the size factor component is determined by aggregating the\
\ following components, for the Long Term Insurance Fund:\n(a)\tthe default risk\
\ components determined in accordance with Rule A8.4;\n(b)\tthe investment volatility\
\ risk component determined in accordance with Rule A8.5; and\n(c)\tthe concentration\
\ risk component determined in accordance with Rule A8.8."
- source_sentence: In the case of non-compliance with Part 17 of FSMR, what are the
typical steps or actions the ADGM might take against an authorised firm?
sentences:
- 'The Regulatory Authority shall, within thirty (30) days of the date of the notification
mentioned in subparagraph (2), notify the Account Holder or the Controlling Person
of the violation, the amount of the fine and the payment request of the fine within
no later than thirty (30) days from receipt of the notice.
'
- "When employing an eKYC System to assist with CDD, a Relevant Person should:\n\
a.\tensure that it has a thorough understanding of the eKYC System itself and\
\ the risks of eKYC, including those outlined by relevant guidance from FATF and\
\ other international standard setting bodies;\nb.\tcomply with all the Rules\
\ of the Regulator relevant to eKYC including, but not limited to, applicable\
\ requirements regarding the business risk assessment, as per Rule 6.1, and outsourcing,\
\ as per Rule 9.3;\nc.\tcombine eKYC with transaction monitoring, anti-fraud\
\ and cyber-security measures to support a wider framework preventing applicable\
\ Financial Crime; and\nd.\ttake appropriate steps to identify, assess and mitigate\
\ the risk of the eKYC system being misused for the purposes of Financial Crime."
- This Chapter deals with the regulatory requirements arising out of the need for
Authorised Persons to carry out a self assessment of their risk which can be reviewed
and assessed by the Regulator. This Chapter details the Rules stipulating the
need to complete internal risk assessments by Authorised Persons in defined frequencies
and the Regulator's role in reviewing the results of such assessments. In the
case of Authorised Persons facing financial risks, the requirements in this Chapter
mandate completion of an Internal Capital Adequacy Assessment Process. The Regulator
will review the results of such internal risk assessments. This Chapter also sets
out how the Regulator may impose an additional Capital Requirement on a firm specific
basis in addition to the minimum requirement specified in Chapter 3 of these Rules
to address higher-than-normal risk.
- source_sentence: In terms of basis risk, are there any preferred methods or models
that the ADGM recommends for assessing the impact of divergences in market rates,
such as the prime rate versus deposit and benchmark rates?
sentences:
- "In performing its functions and exercising its powers, the Regulator shall pursue\
\ the following objectives—\n(a)\tto foster and maintain fairness, transparency\
\ and efficiency in the Abu Dhabi Global Market;\n(b)\tto foster and maintain\
\ confidence in the Abu Dhabi Global Market;\n(c)\tto ensure that the financial\
\ markets in the Abu Dhabi Global Market are supported by safe and efficient infrastructure;\n\
(d)\tto foster and maintain financial stability in the Abu Dhabi Global Market,\
\ including the reduction of systemic risk;\n(e)\tto promote and enhance the integrity\
\ of the Abu Dhabi Global Market Financial System;\n(f)\tto prevent, detect and\
\ restrain conduct that causes or may cause damage to the reputation of the Abu\
\ Dhabi Global Market through appropriate means including the imposition of sanctions;\n\
(g)\tto secure an appropriate degree of protection for direct and indirect users,\
\ and prospective users of the Abu Dhabi Global Market;\n(h)\tto promote public\
\ understanding of the regulation of the Abu Dhabi Global Market;\n(i)\tto further\
\ the interests of the Abu Dhabi Global Market;\n(j)\tto promote the safety and\
\ soundness of Authorised Persons and Recognised Bodies; and\n(k)\tto pursue any\
\ other objectives as the Board may set."
- Two-year validity period. During the two-year validity period, the Regulator will
engage with and support the FinTech Participant and ensure the FinTech Participant
operates within the parameters as set and agreed to prior to the grant of the
FSP.
- "Without limiting compliance with Rules 6.1.1 and 6.1.2, prior to launching\
\ any new product, service, or business practice, or using a new or developing\
\ technology, a Relevant Person must take reasonable steps to ensure that it has:\n\
(a)\tassessed and identified the money laundering risks relating to the product,\
\ service, business practice or technology; and\n(b)\ttaken appropriate steps\
\ to mitigate or eliminate the risks identified under (a)."
- source_sentence: How should an Authorised Person document and justify any deviations
when mapping activities into business lines for Operational Risk capital purposes,
particularly when they differ from regulatory capital calculations in other risk
categories?
sentences:
- "For the purposes of 8.1.2(1), in determining when it is appropriate to apply\
\ CDD measures in relation to existing customers, a Relevant Person must take\
\ into account, amongst other things:\n(a)\tany indication that the identity of\
\ the customer, or the customer’s Beneficial Owners, has changed;\n(b)\tany Transactions\
\ that are not reasonably consistent with the Relevant Person’s knowledge of the\
\ customer;\n(c)\tany change in the purpose or intended nature of the Relevant\
\ Person’s relationship with the customer; or\n(d)\tany other matter that might\
\ affect the Relevant Person’s risk assessment of the customer."
- Principles for business line mapping. The mapping of activities into business
lines for Operational Risk capital purposes should be consistent with the definitions
of business lines used for regulatory capital calculations in other risk categories,
i.e. credit and Market Risk. Any deviations from this principle should be clearly
motivated and documented.
- 'REGULATORY REQUIREMENTS FOR AUTHORISED PERSONS ENGAGED IN REGULATED ACTIVITIES
IN RELATION TO VIRTUAL ASSETS
Planned and Unplanned system outages
Authorised Persons should have a programme of planned systems outages to provide
for adequate opportunities to perform updates and testing. Authorised Persons
should also have multiple communication channels to ensure that its Clients are
informed, ahead of time, of any outages which may affect them.
'
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
model-index:
- name: SentenceTransformer based on BAAI/bge-small-en
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: Unknown
type: unknown
metrics:
- type: cosine_accuracy@1
value: 0.6255380200860832
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7517934002869441
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.793400286944046
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8368005738880918
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6255380200860832
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.26410808225729315
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1703012912482066
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09314921090387374
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.5488103778096605
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.670468675274988
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.7117168818747011
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.7628347680535629
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.6800021713111875
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.6975649609437263
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.6393436933673565
name: Cosine Map@100
- type: dot_accuracy@1
value: 0.6255380200860832
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.7517934002869441
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.793400286944046
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.8368005738880918
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.6255380200860832
name: Dot Precision@1
- type: dot_precision@3
value: 0.26410808225729315
name: Dot Precision@3
- type: dot_precision@5
value: 0.1703012912482066
name: Dot Precision@5
- type: dot_precision@10
value: 0.09314921090387374
name: Dot Precision@10
- type: dot_recall@1
value: 0.5488103778096605
name: Dot Recall@1
- type: dot_recall@3
value: 0.670468675274988
name: Dot Recall@3
- type: dot_recall@5
value: 0.7117168818747011
name: Dot Recall@5
- type: dot_recall@10
value: 0.7628347680535629
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.6800021713111875
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.6975649609437263
name: Dot Mrr@10
- type: dot_map@100
value: 0.6393436933673565
name: Dot Map@100
---
# SentenceTransformer based on BAAI/bge-small-en
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-small-en](https://huggingface.co./BAAI/bge-small-en). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-small-en](https://huggingface.co./BAAI/bge-small-en) <!-- at revision 2275a7bdee235e9b4f01fa73aa60d3311983cfea -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 384 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co./models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("DrishtiSharma/bge-small-en-obliqa-5-epochs")
# Run inference
sentences = [
'How should an Authorised Person document and justify any deviations when mapping activities into business lines for Operational Risk capital purposes, particularly when they differ from regulatory capital calculations in other risk categories?',
'Principles for business line mapping. The mapping of activities into business lines for Operational Risk capital purposes should be consistent with the definitions of business lines used for regulatory capital calculations in other risk categories, i.e. credit and Market Risk. Any deviations from this principle should be clearly motivated and documented.',
'REGULATORY REQUIREMENTS FOR AUTHORISED PERSONS ENGAGED IN REGULATED ACTIVITIES IN RELATION TO VIRTUAL ASSETS\nPlanned and Unplanned system outages\nAuthorised Persons should have a programme of planned systems outages to provide for adequate opportunities to perform updates and testing. Authorised Persons should also have multiple communication channels to ensure that its Clients are informed, ahead of time, of any outages which may affect them.\n',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.6255 |
| cosine_accuracy@3 | 0.7518 |
| cosine_accuracy@5 | 0.7934 |
| cosine_accuracy@10 | 0.8368 |
| cosine_precision@1 | 0.6255 |
| cosine_precision@3 | 0.2641 |
| cosine_precision@5 | 0.1703 |
| cosine_precision@10 | 0.0931 |
| cosine_recall@1 | 0.5488 |
| cosine_recall@3 | 0.6705 |
| cosine_recall@5 | 0.7117 |
| cosine_recall@10 | 0.7628 |
| cosine_ndcg@10 | 0.68 |
| cosine_mrr@10 | 0.6976 |
| **cosine_map@100** | **0.6393** |
| dot_accuracy@1 | 0.6255 |
| dot_accuracy@3 | 0.7518 |
| dot_accuracy@5 | 0.7934 |
| dot_accuracy@10 | 0.8368 |
| dot_precision@1 | 0.6255 |
| dot_precision@3 | 0.2641 |
| dot_precision@5 | 0.1703 |
| dot_precision@10 | 0.0931 |
| dot_recall@1 | 0.5488 |
| dot_recall@3 | 0.6705 |
| dot_recall@5 | 0.7117 |
| dot_recall@10 | 0.7628 |
| dot_ndcg@10 | 0.68 |
| dot_mrr@10 | 0.6976 |
| dot_map@100 | 0.6393 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 22,291 training samples
* Columns: <code>sentence_0</code> and <code>sentence_1</code>
* Approximate statistics based on the first 1000 samples:
| | sentence_0 | sentence_1 |
|:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 14 tokens</li><li>mean: 34.77 tokens</li><li>max: 68 tokens</li></ul> | <ul><li>min: 12 tokens</li><li>mean: 113.08 tokens</li><li>max: 369 tokens</li></ul> |
* Samples:
| sentence_0 | sentence_1 |
|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>Could you outline the process for obtaining an ADGM Green Fund Designation or an ADGM Climate Transition Fund Designation, and what are the ongoing compliance obligations associated with these designations?</code> | <code>AUTHORISED PERSONS CONDUCTING A REGULATED ACTIVITY IN RELATION TO VIRTUAL ASSETS – EXTENSION INTO TO DIGITAL SECURITIES ACTIVITIES<br>MTFs using Virtual Assets – Becoming a Digital Securities RIE<br>Migration of a Virtual Assets MTF to a RIE is more complex than the extension of a Virtual Assets MTF into Digital Securities (as dealt with in paragraphs 63 - 67 above). This is due to a number of factors, including that a RIE is required to meet the full suite of requirements in Chapters 2 and 3 of MIR, and the primary market considerations associated with operating a RIE (e.g., requirement for Approved Prospectuses, admission to the Official List of Securities, and the ongoing technical/operational and regulatory requirements related to Digital Securities being admitted to trading and admitted to the Official List).<br></code> |
| <code>Can the ADGM provide examples of effective internal risk control and reporting mechanisms that ensure an accurate assessment of a Reporting Entity's financial position and prospects, as per Rule 9.2.8?</code> | <code>Risk control. Authorised Persons should recognise and control the Credit Risk arising from their new products and services. Well in advance of entering into business transactions involving new types of products and activities, they should ensure that they understand the risks fully and have established appropriate Credit Risk policies, procedures and controls, which should be approved by the Governing Body or its appropriate delegated committee. A formal risk assessment of new products and activities should also be performed and documented.</code> |
| <code>What are the specific criteria used by the FSRA to determine whether a company's ESG disclosures align with a globally recognized standard?</code> | <code>The Regulator may refuse to grant an application for an ADGM Green Bond Designation or an ADGM Sustainability-Linked Bond Designation if it is not satisfied that the requirements of this section have been met or will be met on an ongoing basis.<br></code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 10
- `per_device_eval_batch_size`: 10
- `num_train_epochs`: 5
- `multi_dataset_batch_sampler`: round_robin
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 10
- `per_device_eval_batch_size`: 10
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 5
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin
</details>
### Training Logs
| Epoch | Step | Training Loss | cosine_map@100 |
|:------:|:-----:|:-------------:|:--------------:|
| 0.0897 | 200 | - | 0.5994 |
| 0.1794 | 400 | - | 0.6027 |
| 0.2242 | 500 | 0.925 | - |
| 0.2691 | 600 | - | 0.6053 |
| 0.3587 | 800 | - | 0.6123 |
| 0.4484 | 1000 | 0.5995 | 0.5981 |
| 0.5381 | 1200 | - | 0.6230 |
| 0.6278 | 1400 | - | 0.6236 |
| 0.6726 | 1500 | 0.5963 | - |
| 0.7175 | 1600 | - | 0.6082 |
| 0.8072 | 1800 | - | 0.6192 |
| 0.8969 | 2000 | 0.5078 | 0.6128 |
| 0.9865 | 2200 | - | 0.6159 |
| 1.0 | 2230 | - | 0.6235 |
| 1.0762 | 2400 | - | 0.6232 |
| 1.1211 | 2500 | 0.4599 | - |
| 1.1659 | 2600 | - | 0.6122 |
| 1.2556 | 2800 | - | 0.6242 |
| 1.3453 | 3000 | 0.4054 | 0.6246 |
| 1.4350 | 3200 | - | 0.6364 |
| 1.5247 | 3400 | - | 0.6260 |
| 1.5695 | 3500 | 0.4197 | - |
| 1.6143 | 3600 | - | 0.6230 |
| 1.7040 | 3800 | - | 0.6324 |
| 1.7937 | 4000 | 0.3896 | 0.6384 |
| 1.8834 | 4200 | - | 0.6346 |
| 1.9731 | 4400 | - | 0.6279 |
| 2.0 | 4460 | - | 0.6296 |
| 2.0179 | 4500 | 0.3875 | - |
| 2.0628 | 4600 | - | 0.6263 |
| 2.1525 | 4800 | - | 0.6326 |
| 2.2422 | 5000 | 0.3117 | 0.6306 |
| 2.3318 | 5200 | - | 0.6351 |
| 2.4215 | 5400 | - | 0.6330 |
| 2.4664 | 5500 | 0.3327 | - |
| 2.5112 | 5600 | - | 0.6355 |
| 2.6009 | 5800 | - | 0.6323 |
| 2.6906 | 6000 | 0.3017 | 0.6249 |
| 2.7803 | 6200 | - | 0.6324 |
| 2.8700 | 6400 | - | 0.6326 |
| 2.9148 | 6500 | 0.2971 | - |
| 2.9596 | 6600 | - | 0.6306 |
| 3.0 | 6690 | - | 0.6368 |
| 3.0493 | 6800 | - | 0.6351 |
| 3.1390 | 7000 | 0.2755 | 0.6308 |
| 3.2287 | 7200 | - | 0.6372 |
| 3.3184 | 7400 | - | 0.6390 |
| 3.3632 | 7500 | 0.2639 | - |
| 3.4081 | 7600 | - | 0.6326 |
| 3.4978 | 7800 | - | 0.6351 |
| 3.5874 | 8000 | 0.2474 | 0.6377 |
| 3.6771 | 8200 | - | 0.6375 |
| 3.7668 | 8400 | - | 0.6380 |
| 3.8117 | 8500 | 0.2402 | - |
| 3.8565 | 8600 | - | 0.6407 |
| 3.9462 | 8800 | - | 0.6401 |
| 4.0 | 8920 | - | 0.6433 |
| 4.0359 | 9000 | 0.2628 | 0.6452 |
| 4.1256 | 9200 | - | 0.6432 |
| 4.2152 | 9400 | - | 0.6426 |
| 4.2601 | 9500 | 0.2318 | - |
| 4.3049 | 9600 | - | 0.6404 |
| 4.3946 | 9800 | - | 0.6390 |
| 4.4843 | 10000 | 0.2246 | 0.6389 |
| 4.5740 | 10200 | - | 0.6394 |
| 4.6637 | 10400 | - | 0.6388 |
| 4.7085 | 10500 | 0.2054 | - |
| 4.7534 | 10600 | - | 0.6396 |
| 4.8430 | 10800 | - | 0.6389 |
| 4.9327 | 11000 | 0.2194 | 0.6394 |
| 5.0 | 11150 | - | 0.6393 |
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.1
- Transformers: 4.45.2
- PyTorch: 2.5.1+cu121
- Accelerate: 1.2.0.dev0
- Datasets: 3.1.0
- Tokenizers: 0.20.3
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |