DrishtiSharma commited on
Commit
73b4039
1 Parent(s): a3efd1e

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,721 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:22291
8
+ - loss:MultipleNegativesRankingLoss
9
+ base_model: BAAI/bge-small-en
10
+ widget:
11
+ - source_sentence: What rights and obligations does an Authorised Person have if a
12
+ storage facility holding Accepted Spot Commodities becomes insolvent?
13
+ sentences:
14
+ - "MTF (using Virtual Assets): using third-party issued fiat tokens as a payment/transaction\
15
+ \ mechanism:\n\ni.\tIn the context of using third party fiat tokens, the Authorised\
16
+ \ Person must directly meet the requirements of the Accepted Virtual Assets, Technology\
17
+ \ Governance and AML/CFT sections of this Guidance.\n\nii.\tFor the related fiat\
18
+ \ currency custody activities, FSRA preference is to have the MTF utilise a Virtual\
19
+ \ Asset/Fiat Custodian authorised on the basis of paragraphs 139 - 145 or 166(b)\
20
+ \ above.\n\niii.\tIn relation to the issuance of the related fiat token, in circumstances\
21
+ \ where the issuer is not authorised under paragraph 166(a) above, it is expected\
22
+ \ that the Authorised Person undertake the same due diligence as that it would\
23
+ \ apply for the purposes of determining Accepted Virtual Assets (focusing on Technology\
24
+ \ Governance requirements, the seven factors used to determine an Accepted Virtual\
25
+ \ Asset, and requirements relating to reporting and reconciliation).\n"
26
+ - 'Valuation adjustments. The Regulator expects the following valuation adjustments
27
+ to be formally considered at a minimum: unearned credit spreads, close out costs,
28
+ Operational Risks, early termination, investing and funding costs, and future
29
+ administrative costs and, where appropriate, model risk.
30
+
31
+ '
32
+ - "Storage Facilities. An Authorised Person must have arrangements in place for\
33
+ \ the approval, management, monitoring and control for Accepted Spot Commodities\
34
+ \ and the storage facilities operated by itself or by third parties, including\
35
+ \ in relation to:\n(a)\tsecurity arrangements;\n(b)\tperiodic stock reports;\n\
36
+ (c)\tperiodic inventory audits;\n(d)\tdispute resolution procedures where the\
37
+ \ storage facility materially fails to meet any of its obligations to the title\
38
+ \ holder;\n(e)\tstorage or other fees; and\n(f)\trights and obligations in the\
39
+ \ event of storage facility insolvency, as per the rules, terms, conditions and\
40
+ \ other obligations of the Authorised Person."
41
+ - source_sentence: Regarding GEN Rule 3.3, can you provide examples of what constitutes
42
+ effective and responsible management of an Authorised Person's affairs in the
43
+ context of Virtual Assets?
44
+ sentences:
45
+ - 'REGULATORY REQUIREMENTS - SPOT COMMODITY ACTIVITIES
46
+
47
+ Custody
48
+
49
+ Due to their psychical nature, Spot Commodities may require specialist Custody
50
+ arrangements, with the holding of Accepted Spot Commodities introducing additional
51
+ operational risks. For example, the safekeeping of gold bullion would require
52
+ a custodian with appropriate secure vault facilities.
53
+
54
+ '
55
+ - "Measurement of E for pre settlement Counterparty Exposures arising from SFTs.\
56
+ \ An Authorised Person must determine E, for a pre settlement Counterparty Exposure\
57
+ \ arising from an SFT which is not covered by a qualifying cross product Netting\
58
+ \ agreement as follows:\n(a)\tin the case where the Authorised Person has lent\
59
+ \ Securities to a Counterparty or sold Securities to a Counterparty with a commitment\
60
+ \ to repurchase those Securities at a specified price on a specified future date,\
61
+ \ the latest fair value of the Securities lent or sold; and\n(b)\tin the case\
62
+ \ where the Authorised Person has lent cash to a Counterparty through the borrowing\
63
+ \ of Securities from the Counterparty or paid cash for the purchase of Securities\
64
+ \ from a Counterparty with a commitment to resell those Securities at a specified\
65
+ \ price on a specified future date, the amount of cash lent or paid."
66
+ - "The base figure for the size factor component is determined by aggregating the\
67
+ \ following components, for the Long Term Insurance Fund:\n(a)\tthe default risk\
68
+ \ components determined in accordance with Rule ‎A8.4;\n(b)\tthe investment volatility\
69
+ \ risk component determined in accordance with Rule ‎A8.5; and\n(c)\tthe concentration\
70
+ \ risk component determined in accordance with Rule ‎A8.8."
71
+ - source_sentence: In the case of non-compliance with Part 17 of FSMR, what are the
72
+ typical steps or actions the ADGM might take against an authorised firm?
73
+ sentences:
74
+ - 'The Regulatory Authority shall, within thirty (30) days of the date of the notification
75
+ mentioned in subparagraph (2), notify the Account Holder or the Controlling Person
76
+ of the violation, the amount of the fine and the payment request of the fine within
77
+ no later than thirty (30) days from receipt of the notice.
78
+
79
+ '
80
+ - "When employing an eKYC System to assist with CDD, a Relevant Person should:\n\
81
+ a.\tensure that it has a thorough understanding of the eKYC System itself and\
82
+ \ the risks of eKYC, including those outlined by relevant guidance from FATF and\
83
+ \ other international standard setting bodies;\nb.\tcomply with all the Rules\
84
+ \ of the Regulator relevant to eKYC including, but not limited to, applicable\
85
+ \ requirements regarding the business risk assessment, as per Rule ‎6.1, and outsourcing,\
86
+ \ as per Rule ‎9.3;\nc.\tcombine eKYC with transaction monitoring, anti-fraud\
87
+ \ and cyber-security measures to support a wider framework preventing applicable\
88
+ \ Financial Crime; and\nd.\ttake appropriate steps to identify, assess and mitigate\
89
+ \ the risk of the eKYC system being misused for the purposes of Financial Crime."
90
+ - This Chapter deals with the regulatory requirements arising out of the need for
91
+ Authorised Persons to carry out a self assessment of their risk which can be reviewed
92
+ and assessed by the Regulator. This Chapter details the Rules stipulating the
93
+ need to complete internal risk assessments by Authorised Persons in defined frequencies
94
+ and the Regulator's role in reviewing the results of such assessments. In the
95
+ case of Authorised Persons facing financial risks, the requirements in this Chapter
96
+ mandate completion of an Internal Capital Adequacy Assessment Process. The Regulator
97
+ will review the results of such internal risk assessments. This Chapter also sets
98
+ out how the Regulator may impose an additional Capital Requirement on a firm specific
99
+ basis in addition to the minimum requirement specified in Chapter 3 of these Rules
100
+ to address higher-than-normal risk.
101
+ - source_sentence: In terms of basis risk, are there any preferred methods or models
102
+ that the ADGM recommends for assessing the impact of divergences in market rates,
103
+ such as the prime rate versus deposit and benchmark rates?
104
+ sentences:
105
+ - "In performing its functions and exercising its powers, the Regulator shall pursue\
106
+ \ the following objectives—\n(a)\tto foster and maintain fairness, transparency\
107
+ \ and efficiency in the Abu Dhabi Global Market;\n(b)\tto foster and maintain\
108
+ \ confidence in the Abu Dhabi Global Market;\n(c)\tto ensure that the financial\
109
+ \ markets in the Abu Dhabi Global Market are supported by safe and efficient infrastructure;\n\
110
+ (d)\tto foster and maintain financial stability in the Abu Dhabi Global Market,\
111
+ \ including the reduction of systemic risk;\n(e)\tto promote and enhance the integrity\
112
+ \ of the Abu Dhabi Global Market Financial System;\n(f)\tto prevent, detect and\
113
+ \ restrain conduct that causes or may cause damage to the reputation of the Abu\
114
+ \ Dhabi Global Market through appropriate means including the imposition of sanctions;\n\
115
+ (g)\tto secure an appropriate degree of protection for direct and indirect users,\
116
+ \ and prospective users of the Abu Dhabi Global Market;\n(h)\tto promote public\
117
+ \ understanding of the regulation of the Abu Dhabi Global Market;\n(i)\tto further\
118
+ \ the interests of the Abu Dhabi Global Market;\n(j)\tto promote the safety and\
119
+ \ soundness of Authorised Persons and Recognised Bodies; and\n(k)\tto pursue any\
120
+ \ other objectives as the Board may set."
121
+ - Two-year validity period. During the two-year validity period, the Regulator will
122
+ engage with and support the FinTech Participant and ensure the FinTech Participant
123
+ operates within the parameters as set and agreed to prior to the grant of the
124
+ FSP.
125
+ - "Without limiting compliance with Rules ‎6.1.1 and ‎6.1.2, prior to launching\
126
+ \ any new product, service, or business practice, or using a new or developing\
127
+ \ technology, a Relevant Person must take reasonable steps to ensure that it has:\n\
128
+ (a)\tassessed and identified the money laundering risks relating to the product,\
129
+ \ service, business practice or technology; and\n(b)\ttaken appropriate steps\
130
+ \ to mitigate or eliminate the risks identified under (a)."
131
+ - source_sentence: How should an Authorised Person document and justify any deviations
132
+ when mapping activities into business lines for Operational Risk capital purposes,
133
+ particularly when they differ from regulatory capital calculations in other risk
134
+ categories?
135
+ sentences:
136
+ - "For the purposes of ‎8.1.2(1), in determining when it is appropriate to apply\
137
+ \ CDD measures in relation to existing customers, a Relevant Person must take\
138
+ \ into account, amongst other things:\n(a)\tany indication that the identity of\
139
+ \ the customer, or the customer’s Beneficial Owners, has changed;\n(b)\tany Transactions\
140
+ \ that are not reasonably consistent with the Relevant Person’s knowledge of the\
141
+ \ customer;\n(c)\tany change in the purpose or intended nature of the Relevant\
142
+ \ Person’s relationship with the customer; or\n(d)\tany other matter that might\
143
+ \ affect the Relevant Person’s risk assessment of the customer."
144
+ - Principles for business line mapping. The mapping of activities into business
145
+ lines for Operational Risk capital purposes should be consistent with the definitions
146
+ of business lines used for regulatory capital calculations in other risk categories,
147
+ i.e. credit and Market Risk. Any deviations from this principle should be clearly
148
+ motivated and documented.
149
+ - 'REGULATORY REQUIREMENTS FOR AUTHORISED PERSONS ENGAGED IN REGULATED ACTIVITIES
150
+ IN RELATION TO VIRTUAL ASSETS
151
+
152
+ Planned and Unplanned system outages
153
+
154
+ Authorised Persons should have a programme of planned systems outages to provide
155
+ for adequate opportunities to perform updates and testing. Authorised Persons
156
+ should also have multiple communication channels to ensure that its Clients are
157
+ informed, ahead of time, of any outages which may affect them.
158
+
159
+ '
160
+ pipeline_tag: sentence-similarity
161
+ library_name: sentence-transformers
162
+ metrics:
163
+ - cosine_accuracy@1
164
+ - cosine_accuracy@3
165
+ - cosine_accuracy@5
166
+ - cosine_accuracy@10
167
+ - cosine_precision@1
168
+ - cosine_precision@3
169
+ - cosine_precision@5
170
+ - cosine_precision@10
171
+ - cosine_recall@1
172
+ - cosine_recall@3
173
+ - cosine_recall@5
174
+ - cosine_recall@10
175
+ - cosine_ndcg@10
176
+ - cosine_mrr@10
177
+ - cosine_map@100
178
+ - dot_accuracy@1
179
+ - dot_accuracy@3
180
+ - dot_accuracy@5
181
+ - dot_accuracy@10
182
+ - dot_precision@1
183
+ - dot_precision@3
184
+ - dot_precision@5
185
+ - dot_precision@10
186
+ - dot_recall@1
187
+ - dot_recall@3
188
+ - dot_recall@5
189
+ - dot_recall@10
190
+ - dot_ndcg@10
191
+ - dot_mrr@10
192
+ - dot_map@100
193
+ model-index:
194
+ - name: SentenceTransformer based on BAAI/bge-small-en
195
+ results:
196
+ - task:
197
+ type: information-retrieval
198
+ name: Information Retrieval
199
+ dataset:
200
+ name: Unknown
201
+ type: unknown
202
+ metrics:
203
+ - type: cosine_accuracy@1
204
+ value: 0.6255380200860832
205
+ name: Cosine Accuracy@1
206
+ - type: cosine_accuracy@3
207
+ value: 0.7517934002869441
208
+ name: Cosine Accuracy@3
209
+ - type: cosine_accuracy@5
210
+ value: 0.793400286944046
211
+ name: Cosine Accuracy@5
212
+ - type: cosine_accuracy@10
213
+ value: 0.8368005738880918
214
+ name: Cosine Accuracy@10
215
+ - type: cosine_precision@1
216
+ value: 0.6255380200860832
217
+ name: Cosine Precision@1
218
+ - type: cosine_precision@3
219
+ value: 0.26410808225729315
220
+ name: Cosine Precision@3
221
+ - type: cosine_precision@5
222
+ value: 0.1703012912482066
223
+ name: Cosine Precision@5
224
+ - type: cosine_precision@10
225
+ value: 0.09314921090387374
226
+ name: Cosine Precision@10
227
+ - type: cosine_recall@1
228
+ value: 0.5488103778096605
229
+ name: Cosine Recall@1
230
+ - type: cosine_recall@3
231
+ value: 0.670468675274988
232
+ name: Cosine Recall@3
233
+ - type: cosine_recall@5
234
+ value: 0.7117168818747011
235
+ name: Cosine Recall@5
236
+ - type: cosine_recall@10
237
+ value: 0.7628347680535629
238
+ name: Cosine Recall@10
239
+ - type: cosine_ndcg@10
240
+ value: 0.6800021713111875
241
+ name: Cosine Ndcg@10
242
+ - type: cosine_mrr@10
243
+ value: 0.6975649609437263
244
+ name: Cosine Mrr@10
245
+ - type: cosine_map@100
246
+ value: 0.6393436933673565
247
+ name: Cosine Map@100
248
+ - type: dot_accuracy@1
249
+ value: 0.6255380200860832
250
+ name: Dot Accuracy@1
251
+ - type: dot_accuracy@3
252
+ value: 0.7517934002869441
253
+ name: Dot Accuracy@3
254
+ - type: dot_accuracy@5
255
+ value: 0.793400286944046
256
+ name: Dot Accuracy@5
257
+ - type: dot_accuracy@10
258
+ value: 0.8368005738880918
259
+ name: Dot Accuracy@10
260
+ - type: dot_precision@1
261
+ value: 0.6255380200860832
262
+ name: Dot Precision@1
263
+ - type: dot_precision@3
264
+ value: 0.26410808225729315
265
+ name: Dot Precision@3
266
+ - type: dot_precision@5
267
+ value: 0.1703012912482066
268
+ name: Dot Precision@5
269
+ - type: dot_precision@10
270
+ value: 0.09314921090387374
271
+ name: Dot Precision@10
272
+ - type: dot_recall@1
273
+ value: 0.5488103778096605
274
+ name: Dot Recall@1
275
+ - type: dot_recall@3
276
+ value: 0.670468675274988
277
+ name: Dot Recall@3
278
+ - type: dot_recall@5
279
+ value: 0.7117168818747011
280
+ name: Dot Recall@5
281
+ - type: dot_recall@10
282
+ value: 0.7628347680535629
283
+ name: Dot Recall@10
284
+ - type: dot_ndcg@10
285
+ value: 0.6800021713111875
286
+ name: Dot Ndcg@10
287
+ - type: dot_mrr@10
288
+ value: 0.6975649609437263
289
+ name: Dot Mrr@10
290
+ - type: dot_map@100
291
+ value: 0.6393436933673565
292
+ name: Dot Map@100
293
+ ---
294
+
295
+ # SentenceTransformer based on BAAI/bge-small-en
296
+
297
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-small-en](https://huggingface.co/BAAI/bge-small-en). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
298
+
299
+ ## Model Details
300
+
301
+ ### Model Description
302
+ - **Model Type:** Sentence Transformer
303
+ - **Base model:** [BAAI/bge-small-en](https://huggingface.co/BAAI/bge-small-en) <!-- at revision 2275a7bdee235e9b4f01fa73aa60d3311983cfea -->
304
+ - **Maximum Sequence Length:** 512 tokens
305
+ - **Output Dimensionality:** 384 tokens
306
+ - **Similarity Function:** Cosine Similarity
307
+ <!-- - **Training Dataset:** Unknown -->
308
+ <!-- - **Language:** Unknown -->
309
+ <!-- - **License:** Unknown -->
310
+
311
+ ### Model Sources
312
+
313
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
314
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
315
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
316
+
317
+ ### Full Model Architecture
318
+
319
+ ```
320
+ SentenceTransformer(
321
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
322
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
323
+ (2): Normalize()
324
+ )
325
+ ```
326
+
327
+ ## Usage
328
+
329
+ ### Direct Usage (Sentence Transformers)
330
+
331
+ First install the Sentence Transformers library:
332
+
333
+ ```bash
334
+ pip install -U sentence-transformers
335
+ ```
336
+
337
+ Then you can load this model and run inference.
338
+ ```python
339
+ from sentence_transformers import SentenceTransformer
340
+
341
+ # Download from the 🤗 Hub
342
+ model = SentenceTransformer("DrishtiSharma/bge-small-en-obliqa-5-epochs")
343
+ # Run inference
344
+ sentences = [
345
+ 'How should an Authorised Person document and justify any deviations when mapping activities into business lines for Operational Risk capital purposes, particularly when they differ from regulatory capital calculations in other risk categories?',
346
+ 'Principles for business line mapping. The mapping of activities into business lines for Operational Risk capital purposes should be consistent with the definitions of business lines used for regulatory capital calculations in other risk categories, i.e. credit and Market Risk. Any deviations from this principle should be clearly motivated and documented.',
347
+ 'REGULATORY REQUIREMENTS FOR AUTHORISED PERSONS ENGAGED IN REGULATED ACTIVITIES IN RELATION TO VIRTUAL ASSETS\nPlanned and Unplanned system outages\nAuthorised Persons should have a programme of planned systems outages to provide for adequate opportunities to perform updates and testing. Authorised Persons should also have multiple communication channels to ensure that its Clients are informed, ahead of time, of any outages which may affect them.\n',
348
+ ]
349
+ embeddings = model.encode(sentences)
350
+ print(embeddings.shape)
351
+ # [3, 384]
352
+
353
+ # Get the similarity scores for the embeddings
354
+ similarities = model.similarity(embeddings, embeddings)
355
+ print(similarities.shape)
356
+ # [3, 3]
357
+ ```
358
+
359
+ <!--
360
+ ### Direct Usage (Transformers)
361
+
362
+ <details><summary>Click to see the direct usage in Transformers</summary>
363
+
364
+ </details>
365
+ -->
366
+
367
+ <!--
368
+ ### Downstream Usage (Sentence Transformers)
369
+
370
+ You can finetune this model on your own dataset.
371
+
372
+ <details><summary>Click to expand</summary>
373
+
374
+ </details>
375
+ -->
376
+
377
+ <!--
378
+ ### Out-of-Scope Use
379
+
380
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
381
+ -->
382
+
383
+ ## Evaluation
384
+
385
+ ### Metrics
386
+
387
+ #### Information Retrieval
388
+
389
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
390
+
391
+ | Metric | Value |
392
+ |:--------------------|:-----------|
393
+ | cosine_accuracy@1 | 0.6255 |
394
+ | cosine_accuracy@3 | 0.7518 |
395
+ | cosine_accuracy@5 | 0.7934 |
396
+ | cosine_accuracy@10 | 0.8368 |
397
+ | cosine_precision@1 | 0.6255 |
398
+ | cosine_precision@3 | 0.2641 |
399
+ | cosine_precision@5 | 0.1703 |
400
+ | cosine_precision@10 | 0.0931 |
401
+ | cosine_recall@1 | 0.5488 |
402
+ | cosine_recall@3 | 0.6705 |
403
+ | cosine_recall@5 | 0.7117 |
404
+ | cosine_recall@10 | 0.7628 |
405
+ | cosine_ndcg@10 | 0.68 |
406
+ | cosine_mrr@10 | 0.6976 |
407
+ | **cosine_map@100** | **0.6393** |
408
+ | dot_accuracy@1 | 0.6255 |
409
+ | dot_accuracy@3 | 0.7518 |
410
+ | dot_accuracy@5 | 0.7934 |
411
+ | dot_accuracy@10 | 0.8368 |
412
+ | dot_precision@1 | 0.6255 |
413
+ | dot_precision@3 | 0.2641 |
414
+ | dot_precision@5 | 0.1703 |
415
+ | dot_precision@10 | 0.0931 |
416
+ | dot_recall@1 | 0.5488 |
417
+ | dot_recall@3 | 0.6705 |
418
+ | dot_recall@5 | 0.7117 |
419
+ | dot_recall@10 | 0.7628 |
420
+ | dot_ndcg@10 | 0.68 |
421
+ | dot_mrr@10 | 0.6976 |
422
+ | dot_map@100 | 0.6393 |
423
+
424
+ <!--
425
+ ## Bias, Risks and Limitations
426
+
427
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
428
+ -->
429
+
430
+ <!--
431
+ ### Recommendations
432
+
433
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
434
+ -->
435
+
436
+ ## Training Details
437
+
438
+ ### Training Dataset
439
+
440
+ #### Unnamed Dataset
441
+
442
+
443
+ * Size: 22,291 training samples
444
+ * Columns: <code>sentence_0</code> and <code>sentence_1</code>
445
+ * Approximate statistics based on the first 1000 samples:
446
+ | | sentence_0 | sentence_1 |
447
+ |:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
448
+ | type | string | string |
449
+ | details | <ul><li>min: 14 tokens</li><li>mean: 34.77 tokens</li><li>max: 68 tokens</li></ul> | <ul><li>min: 12 tokens</li><li>mean: 113.08 tokens</li><li>max: 369 tokens</li></ul> |
450
+ * Samples:
451
+ | sentence_0 | sentence_1 |
452
+ |:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
453
+ | <code>Could you outline the process for obtaining an ADGM Green Fund Designation or an ADGM Climate Transition Fund Designation, and what are the ongoing compliance obligations associated with these designations?</code> | <code>AUTHORISED PERSONS CONDUCTING A REGULATED ACTIVITY IN RELATION TO VIRTUAL ASSETS – EXTENSION INTO TO DIGITAL SECURITIES ACTIVITIES<br>MTFs using Virtual Assets – Becoming a Digital Securities RIE<br>Migration of a Virtual Assets MTF to a RIE is more complex than the extension of a Virtual Assets MTF into Digital Securities (as dealt with in paragraphs 63 - 67 above). This is due to a number of factors, including that a RIE is required to meet the full suite of requirements in Chapters 2 and 3 of MIR, and the primary market considerations associated with operating a RIE (e.g., requirement for Approved Prospectuses, admission to the Official List of Securities, and the ongoing technical/operational and regulatory requirements related to Digital Securities being admitted to trading and admitted to the Official List).<br></code> |
454
+ | <code>Can the ADGM provide examples of effective internal risk control and reporting mechanisms that ensure an accurate assessment of a Reporting Entity's financial position and prospects, as per Rule 9.2.8?</code> | <code>Risk control. Authorised Persons should recognise and control the Credit Risk arising from their new products and services. Well in advance of entering into business transactions involving new types of products and activities, they should ensure that they understand the risks fully and have established appropriate Credit Risk policies, procedures and controls, which should be approved by the Governing Body or its appropriate delegated committee. A formal risk assessment of new products and activities should also be performed and documented.</code> |
455
+ | <code>What are the specific criteria used by the FSRA to determine whether a company's ESG disclosures align with a globally recognized standard?</code> | <code>The Regulator may refuse to grant an application for an ADGM Green Bond Designation or an ADGM Sustainability-Linked Bond Designation if it is not satisfied that the requirements of this section have been met or will be met on an ongoing basis.<br></code> |
456
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
457
+ ```json
458
+ {
459
+ "scale": 20.0,
460
+ "similarity_fct": "cos_sim"
461
+ }
462
+ ```
463
+
464
+ ### Training Hyperparameters
465
+ #### Non-Default Hyperparameters
466
+
467
+ - `eval_strategy`: steps
468
+ - `per_device_train_batch_size`: 10
469
+ - `per_device_eval_batch_size`: 10
470
+ - `num_train_epochs`: 5
471
+ - `multi_dataset_batch_sampler`: round_robin
472
+
473
+ #### All Hyperparameters
474
+ <details><summary>Click to expand</summary>
475
+
476
+ - `overwrite_output_dir`: False
477
+ - `do_predict`: False
478
+ - `eval_strategy`: steps
479
+ - `prediction_loss_only`: True
480
+ - `per_device_train_batch_size`: 10
481
+ - `per_device_eval_batch_size`: 10
482
+ - `per_gpu_train_batch_size`: None
483
+ - `per_gpu_eval_batch_size`: None
484
+ - `gradient_accumulation_steps`: 1
485
+ - `eval_accumulation_steps`: None
486
+ - `torch_empty_cache_steps`: None
487
+ - `learning_rate`: 5e-05
488
+ - `weight_decay`: 0.0
489
+ - `adam_beta1`: 0.9
490
+ - `adam_beta2`: 0.999
491
+ - `adam_epsilon`: 1e-08
492
+ - `max_grad_norm`: 1
493
+ - `num_train_epochs`: 5
494
+ - `max_steps`: -1
495
+ - `lr_scheduler_type`: linear
496
+ - `lr_scheduler_kwargs`: {}
497
+ - `warmup_ratio`: 0.0
498
+ - `warmup_steps`: 0
499
+ - `log_level`: passive
500
+ - `log_level_replica`: warning
501
+ - `log_on_each_node`: True
502
+ - `logging_nan_inf_filter`: True
503
+ - `save_safetensors`: True
504
+ - `save_on_each_node`: False
505
+ - `save_only_model`: False
506
+ - `restore_callback_states_from_checkpoint`: False
507
+ - `no_cuda`: False
508
+ - `use_cpu`: False
509
+ - `use_mps_device`: False
510
+ - `seed`: 42
511
+ - `data_seed`: None
512
+ - `jit_mode_eval`: False
513
+ - `use_ipex`: False
514
+ - `bf16`: False
515
+ - `fp16`: False
516
+ - `fp16_opt_level`: O1
517
+ - `half_precision_backend`: auto
518
+ - `bf16_full_eval`: False
519
+ - `fp16_full_eval`: False
520
+ - `tf32`: None
521
+ - `local_rank`: 0
522
+ - `ddp_backend`: None
523
+ - `tpu_num_cores`: None
524
+ - `tpu_metrics_debug`: False
525
+ - `debug`: []
526
+ - `dataloader_drop_last`: False
527
+ - `dataloader_num_workers`: 0
528
+ - `dataloader_prefetch_factor`: None
529
+ - `past_index`: -1
530
+ - `disable_tqdm`: False
531
+ - `remove_unused_columns`: True
532
+ - `label_names`: None
533
+ - `load_best_model_at_end`: False
534
+ - `ignore_data_skip`: False
535
+ - `fsdp`: []
536
+ - `fsdp_min_num_params`: 0
537
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
538
+ - `fsdp_transformer_layer_cls_to_wrap`: None
539
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
540
+ - `deepspeed`: None
541
+ - `label_smoothing_factor`: 0.0
542
+ - `optim`: adamw_torch
543
+ - `optim_args`: None
544
+ - `adafactor`: False
545
+ - `group_by_length`: False
546
+ - `length_column_name`: length
547
+ - `ddp_find_unused_parameters`: None
548
+ - `ddp_bucket_cap_mb`: None
549
+ - `ddp_broadcast_buffers`: False
550
+ - `dataloader_pin_memory`: True
551
+ - `dataloader_persistent_workers`: False
552
+ - `skip_memory_metrics`: True
553
+ - `use_legacy_prediction_loop`: False
554
+ - `push_to_hub`: False
555
+ - `resume_from_checkpoint`: None
556
+ - `hub_model_id`: None
557
+ - `hub_strategy`: every_save
558
+ - `hub_private_repo`: False
559
+ - `hub_always_push`: False
560
+ - `gradient_checkpointing`: False
561
+ - `gradient_checkpointing_kwargs`: None
562
+ - `include_inputs_for_metrics`: False
563
+ - `eval_do_concat_batches`: True
564
+ - `fp16_backend`: auto
565
+ - `push_to_hub_model_id`: None
566
+ - `push_to_hub_organization`: None
567
+ - `mp_parameters`:
568
+ - `auto_find_batch_size`: False
569
+ - `full_determinism`: False
570
+ - `torchdynamo`: None
571
+ - `ray_scope`: last
572
+ - `ddp_timeout`: 1800
573
+ - `torch_compile`: False
574
+ - `torch_compile_backend`: None
575
+ - `torch_compile_mode`: None
576
+ - `dispatch_batches`: None
577
+ - `split_batches`: None
578
+ - `include_tokens_per_second`: False
579
+ - `include_num_input_tokens_seen`: False
580
+ - `neftune_noise_alpha`: None
581
+ - `optim_target_modules`: None
582
+ - `batch_eval_metrics`: False
583
+ - `eval_on_start`: False
584
+ - `use_liger_kernel`: False
585
+ - `eval_use_gather_object`: False
586
+ - `batch_sampler`: batch_sampler
587
+ - `multi_dataset_batch_sampler`: round_robin
588
+
589
+ </details>
590
+
591
+ ### Training Logs
592
+ | Epoch | Step | Training Loss | cosine_map@100 |
593
+ |:------:|:-----:|:-------------:|:--------------:|
594
+ | 0.0897 | 200 | - | 0.5994 |
595
+ | 0.1794 | 400 | - | 0.6027 |
596
+ | 0.2242 | 500 | 0.925 | - |
597
+ | 0.2691 | 600 | - | 0.6053 |
598
+ | 0.3587 | 800 | - | 0.6123 |
599
+ | 0.4484 | 1000 | 0.5995 | 0.5981 |
600
+ | 0.5381 | 1200 | - | 0.6230 |
601
+ | 0.6278 | 1400 | - | 0.6236 |
602
+ | 0.6726 | 1500 | 0.5963 | - |
603
+ | 0.7175 | 1600 | - | 0.6082 |
604
+ | 0.8072 | 1800 | - | 0.6192 |
605
+ | 0.8969 | 2000 | 0.5078 | 0.6128 |
606
+ | 0.9865 | 2200 | - | 0.6159 |
607
+ | 1.0 | 2230 | - | 0.6235 |
608
+ | 1.0762 | 2400 | - | 0.6232 |
609
+ | 1.1211 | 2500 | 0.4599 | - |
610
+ | 1.1659 | 2600 | - | 0.6122 |
611
+ | 1.2556 | 2800 | - | 0.6242 |
612
+ | 1.3453 | 3000 | 0.4054 | 0.6246 |
613
+ | 1.4350 | 3200 | - | 0.6364 |
614
+ | 1.5247 | 3400 | - | 0.6260 |
615
+ | 1.5695 | 3500 | 0.4197 | - |
616
+ | 1.6143 | 3600 | - | 0.6230 |
617
+ | 1.7040 | 3800 | - | 0.6324 |
618
+ | 1.7937 | 4000 | 0.3896 | 0.6384 |
619
+ | 1.8834 | 4200 | - | 0.6346 |
620
+ | 1.9731 | 4400 | - | 0.6279 |
621
+ | 2.0 | 4460 | - | 0.6296 |
622
+ | 2.0179 | 4500 | 0.3875 | - |
623
+ | 2.0628 | 4600 | - | 0.6263 |
624
+ | 2.1525 | 4800 | - | 0.6326 |
625
+ | 2.2422 | 5000 | 0.3117 | 0.6306 |
626
+ | 2.3318 | 5200 | - | 0.6351 |
627
+ | 2.4215 | 5400 | - | 0.6330 |
628
+ | 2.4664 | 5500 | 0.3327 | - |
629
+ | 2.5112 | 5600 | - | 0.6355 |
630
+ | 2.6009 | 5800 | - | 0.6323 |
631
+ | 2.6906 | 6000 | 0.3017 | 0.6249 |
632
+ | 2.7803 | 6200 | - | 0.6324 |
633
+ | 2.8700 | 6400 | - | 0.6326 |
634
+ | 2.9148 | 6500 | 0.2971 | - |
635
+ | 2.9596 | 6600 | - | 0.6306 |
636
+ | 3.0 | 6690 | - | 0.6368 |
637
+ | 3.0493 | 6800 | - | 0.6351 |
638
+ | 3.1390 | 7000 | 0.2755 | 0.6308 |
639
+ | 3.2287 | 7200 | - | 0.6372 |
640
+ | 3.3184 | 7400 | - | 0.6390 |
641
+ | 3.3632 | 7500 | 0.2639 | - |
642
+ | 3.4081 | 7600 | - | 0.6326 |
643
+ | 3.4978 | 7800 | - | 0.6351 |
644
+ | 3.5874 | 8000 | 0.2474 | 0.6377 |
645
+ | 3.6771 | 8200 | - | 0.6375 |
646
+ | 3.7668 | 8400 | - | 0.6380 |
647
+ | 3.8117 | 8500 | 0.2402 | - |
648
+ | 3.8565 | 8600 | - | 0.6407 |
649
+ | 3.9462 | 8800 | - | 0.6401 |
650
+ | 4.0 | 8920 | - | 0.6433 |
651
+ | 4.0359 | 9000 | 0.2628 | 0.6452 |
652
+ | 4.1256 | 9200 | - | 0.6432 |
653
+ | 4.2152 | 9400 | - | 0.6426 |
654
+ | 4.2601 | 9500 | 0.2318 | - |
655
+ | 4.3049 | 9600 | - | 0.6404 |
656
+ | 4.3946 | 9800 | - | 0.6390 |
657
+ | 4.4843 | 10000 | 0.2246 | 0.6389 |
658
+ | 4.5740 | 10200 | - | 0.6394 |
659
+ | 4.6637 | 10400 | - | 0.6388 |
660
+ | 4.7085 | 10500 | 0.2054 | - |
661
+ | 4.7534 | 10600 | - | 0.6396 |
662
+ | 4.8430 | 10800 | - | 0.6389 |
663
+ | 4.9327 | 11000 | 0.2194 | 0.6394 |
664
+ | 5.0 | 11150 | - | 0.6393 |
665
+
666
+
667
+ ### Framework Versions
668
+ - Python: 3.10.12
669
+ - Sentence Transformers: 3.1.1
670
+ - Transformers: 4.45.2
671
+ - PyTorch: 2.5.1+cu121
672
+ - Accelerate: 1.2.0.dev0
673
+ - Datasets: 3.1.0
674
+ - Tokenizers: 0.20.3
675
+
676
+ ## Citation
677
+
678
+ ### BibTeX
679
+
680
+ #### Sentence Transformers
681
+ ```bibtex
682
+ @inproceedings{reimers-2019-sentence-bert,
683
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
684
+ author = "Reimers, Nils and Gurevych, Iryna",
685
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
686
+ month = "11",
687
+ year = "2019",
688
+ publisher = "Association for Computational Linguistics",
689
+ url = "https://arxiv.org/abs/1908.10084",
690
+ }
691
+ ```
692
+
693
+ #### MultipleNegativesRankingLoss
694
+ ```bibtex
695
+ @misc{henderson2017efficient,
696
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
697
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
698
+ year={2017},
699
+ eprint={1705.00652},
700
+ archivePrefix={arXiv},
701
+ primaryClass={cs.CL}
702
+ }
703
+ ```
704
+
705
+ <!--
706
+ ## Glossary
707
+
708
+ *Clearly define terms in order to be accessible across audiences.*
709
+ -->
710
+
711
+ <!--
712
+ ## Model Card Authors
713
+
714
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
715
+ -->
716
+
717
+ <!--
718
+ ## Model Card Contact
719
+
720
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
721
+ -->
config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-small-en",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "id2label": {
12
+ "0": "LABEL_0"
13
+ },
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 1536,
16
+ "label2id": {
17
+ "LABEL_0": 0
18
+ },
19
+ "layer_norm_eps": 1e-12,
20
+ "max_position_embeddings": 512,
21
+ "model_type": "bert",
22
+ "num_attention_heads": 12,
23
+ "num_hidden_layers": 12,
24
+ "pad_token_id": 0,
25
+ "position_embedding_type": "absolute",
26
+ "torch_dtype": "float32",
27
+ "transformers_version": "4.45.2",
28
+ "type_vocab_size": 2,
29
+ "use_cache": true,
30
+ "vocab_size": 30522
31
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.45.2",
5
+ "pytorch": "2.5.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:96c52176dafa2d3ac17948a878f5dddfe6a55aee80ce9db3a8803ffccd03b544
3
+ size 133462128
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff