2020-Q3-75p-filtered-random

This model is a fine-tuned version of cardiffnlp/twitter-roberta-base-2019-90m on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.2615

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4.1e-07
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 2400000

Training results

Training Loss Epoch Step Validation Loss
No log 0.07 8000 2.5628
2.7869 0.13 16000 2.4609
2.7869 0.2 24000 2.4087
2.5402 0.27 32000 2.3783
2.5402 0.34 40000 2.3566
2.4735 0.4 48000 2.3468
2.4735 0.47 56000 2.3302
2.4558 0.54 64000 2.3247
2.4558 0.61 72000 2.3147
2.428 0.67 80000 2.3084
2.428 0.74 88000 2.3121
2.4192 0.81 96000 2.2980
2.4192 0.88 104000 2.3001
2.4125 0.94 112000 2.2931
2.4125 1.01 120000 2.2866
2.405 1.08 128000 2.2877
2.405 1.15 136000 2.2802
2.4039 1.21 144000 2.2891
2.4039 1.28 152000 2.2845
2.4028 1.35 160000 2.2820
2.4028 1.41 168000 2.2772
2.3948 1.48 176000 2.2839
2.3948 1.55 184000 2.2781
2.3911 1.62 192000 2.2832
2.3911 1.68 200000 2.2807
2.3997 1.75 208000 2.2696
2.3997 1.82 216000 2.2761
2.396 1.89 224000 2.2802
2.396 1.95 232000 2.2751
2.3884 2.02 240000 2.2608
2.3884 2.09 248000 2.2731
2.3915 2.16 256000 2.2729
2.3915 2.22 264000 2.2635
2.3897 2.29 272000 2.2700
2.3897 2.36 280000 2.2724
2.3897 2.43 288000 2.2653
2.3897 2.49 296000 2.2728
2.3887 2.56 304000 2.2643
2.3887 2.63 312000 2.2771
2.3999 2.69 320000 2.2671
2.3999 2.76 328000 2.2627
2.3855 2.83 336000 2.2652
2.3855 2.9 344000 2.2742
2.3917 2.96 352000 2.2724
2.3917 3.03 360000 2.2707
2.3919 3.1 368000 2.2675
2.3919 3.17 376000 2.2689
2.385 3.23 384000 2.2607
2.385 3.3 392000 2.2593
2.3986 3.37 400000 2.2710
2.3986 3.44 408000 2.2671
2.3887 3.5 416000 2.2654
2.3887 3.57 424000 2.2670
2.3929 3.64 432000 2.2608
2.3929 3.71 440000 2.2571
2.3858 3.77 448000 2.2670
2.3858 3.84 456000 2.2712
2.3848 3.91 464000 2.2606
2.3848 3.97 472000 2.2573
2.3901 4.04 480000 2.2588
2.3901 4.11 488000 2.2723
2.3921 4.18 496000 2.2702
2.3921 4.24 504000 2.2603
2.3909 4.31 512000 2.2709
2.3909 4.38 520000 2.2622
2.3907 4.45 528000 2.2623
2.3907 4.51 536000 2.2527
2.3963 4.58 544000 2.2632
2.3963 4.65 552000 2.2564
2.3881 4.72 560000 2.2688
2.3881 4.78 568000 2.2603
2.3934 4.85 576000 2.2607
2.3934 4.92 584000 2.2736
2.396 4.99 592000 2.2664
2.396 5.05 600000 2.2617
2.3959 5.12 608000 2.2672
2.3959 5.19 616000 2.2532
2.3931 5.25 624000 2.2590
2.3931 5.32 632000 2.2646
2.3804 5.39 640000 2.2660
2.3804 5.46 648000 2.2693
2.4016 5.52 656000 2.2573
2.4016 5.59 664000 2.2756
2.3882 5.66 672000 2.2716
2.3882 5.73 680000 2.2666
2.3893 5.79 688000 2.2587
2.3893 5.86 696000 2.2611
2.3894 5.93 704000 2.2629
2.3894 6.0 712000 2.2570
2.3909 6.06 720000 2.2706
2.3909 6.13 728000 2.2581
2.3872 6.2 736000 2.2646
2.3872 6.27 744000 2.2650
2.3835 6.33 752000 2.2599
2.3835 6.4 760000 2.2652
2.402 6.47 768000 2.2659
2.402 6.53 776000 2.2677
2.3953 6.6 784000 2.2576
2.3953 6.67 792000 2.2542
2.3907 6.74 800000 2.2689
2.3907 6.8 808000 2.2679
2.396 6.87 816000 2.2625
2.396 6.94 824000 2.2674
2.3913 7.01 832000 2.2674
2.3913 7.07 840000 2.2633
2.3842 7.14 848000 2.2660
2.3842 7.21 856000 2.2523
2.3921 7.28 864000 2.2599
2.3921 7.34 872000 2.2637
2.3938 7.41 880000 2.2561
2.3938 7.48 888000 2.2626
2.3909 7.55 896000 2.2592
2.3909 7.61 904000 2.2584
2.3928 7.68 912000 2.2750
2.3928 7.75 920000 2.2537
2.3972 7.81 928000 2.2557
2.3972 7.88 936000 2.2580
2.3841 7.95 944000 2.2663
2.3841 8.02 952000 2.2629
2.3871 8.08 960000 2.2665
2.3871 8.15 968000 2.2649
2.39 8.22 976000 2.2571
2.39 8.29 984000 2.2716
2.3932 8.35 992000 2.2613
2.3932 8.42 1000000 2.2683
2.394 8.49 1008000 2.2625
2.394 8.56 1016000 2.2633
2.3961 8.62 1024000 2.2699
2.3961 8.69 1032000 2.2633
2.3907 8.76 1040000 2.2613
2.3907 8.83 1048000 2.2643
2.3909 8.89 1056000 2.2627
2.3909 8.96 1064000 2.2649
2.3901 9.03 1072000 2.2723
2.3901 9.09 1080000 2.2608
2.3967 9.16 1088000 2.2591
2.3967 9.23 1096000 2.2616
2.4001 9.3 1104000 2.2681
2.4001 9.36 1112000 2.2590
2.394 9.43 1120000 2.2648
2.394 9.5 1128000 2.2643
2.3873 9.57 1136000 2.2620
2.3873 9.63 1144000 2.2731
2.3935 9.7 1152000 2.2708
2.3935 9.77 1160000 2.2662
2.3966 9.84 1168000 2.2691
2.3966 9.9 1176000 2.2612
2.3917 9.97 1184000 2.2578
2.3917 10.04 1192000 2.2568
2.3963 10.11 1200000 2.2574
2.3963 10.17 1208000 2.2652
2.3939 10.24 1216000 2.2679
2.3939 10.31 1224000 2.2603
2.4007 10.37 1232000 2.2602
2.4007 10.44 1240000 2.2560
2.4015 10.51 1248000 2.2675
2.4015 10.58 1256000 2.2595
2.3907 10.64 1264000 2.2653
2.3907 10.71 1272000 2.2662
2.3952 10.78 1280000 2.2702
2.3952 10.85 1288000 2.2646
2.3992 10.91 1296000 2.2658
2.3992 10.98 1304000 2.2618
2.3915 11.05 1312000 2.2714
2.3915 11.12 1320000 2.2594
2.3929 11.18 1328000 2.2620
2.3929 11.25 1336000 2.2745
2.3947 11.32 1344000 2.2540
2.3947 11.39 1352000 2.2611
2.3947 11.45 1360000 2.2606
2.3947 11.52 1368000 2.2669
2.3936 11.59 1376000 2.2582
2.3936 11.65 1384000 2.2598
2.3971 11.72 1392000 2.2617
2.3971 11.79 1400000 2.2661
2.3957 11.86 1408000 2.2691
2.3957 11.92 1416000 2.2643
2.3944 11.99 1424000 2.2600
2.3944 12.06 1432000 2.2640
2.394 12.13 1440000 2.2629
2.394 12.19 1448000 2.2607
2.3928 12.26 1456000 2.2624
2.3928 12.33 1464000 2.2681
2.3937 12.4 1472000 2.2594
2.3937 12.46 1480000 2.2717
2.3957 12.53 1488000 2.2642
2.3957 12.6 1496000 2.2635
2.3911 12.67 1504000 2.2662
2.3911 12.73 1512000 2.2568
2.4001 12.8 1520000 2.2622
2.4001 12.87 1528000 2.2640
2.3923 12.93 1536000 2.2593
2.3923 13.0 1544000 2.2544
2.4007 13.07 1552000 2.2658
2.4007 13.14 1560000 2.2587
2.3995 13.2 1568000 2.2668
2.3995 13.27 1576000 2.2682
2.3935 13.34 1584000 2.2603
2.3935 13.41 1592000 2.2618
2.3964 13.47 1600000 2.2716
2.3964 13.54 1608000 2.2563
2.3917 13.61 1616000 2.2674
2.3917 13.68 1624000 2.2617
2.3926 13.74 1632000 2.2668
2.3926 13.81 1640000 2.2614
2.3948 13.88 1648000 2.2628
2.3948 13.95 1656000 2.2671
2.3936 14.01 1664000 2.2652
2.3936 14.08 1672000 2.2705
2.3908 14.15 1680000 2.2670
2.3908 14.21 1688000 2.2657
2.3923 14.28 1696000 2.2699
2.3923 14.35 1704000 2.2700
2.3981 14.42 1712000 2.2667
2.3981 14.48 1720000 2.2707
2.3956 14.55 1728000 2.2558
2.3956 14.62 1736000 2.2721
2.3943 14.69 1744000 2.2676
2.3943 14.75 1752000 2.2675
2.3999 14.82 1760000 2.2556
2.3999 14.89 1768000 2.2655
2.4005 14.96 1776000 2.2769
2.4005 15.02 1784000 2.2697
2.3997 15.09 1792000 2.2614
2.3997 15.16 1800000 2.2669
2.399 15.23 1808000 2.2655
2.399 15.29 1816000 2.2636
2.3987 15.36 1824000 2.2689
2.3987 15.43 1832000 2.2589
2.3984 15.49 1840000 2.2662
2.3984 15.56 1848000 2.2635
2.3939 15.63 1856000 2.2629
2.3939 15.7 1864000 2.2660
2.3954 15.76 1872000 2.2600
2.3954 15.83 1880000 2.2589
2.3987 15.9 1888000 2.2564
2.3987 15.97 1896000 2.2588
2.3992 16.03 1904000 2.2662
2.3992 16.1 1912000 2.2688
2.3962 16.17 1920000 2.2675
2.3962 16.24 1928000 2.2538
2.404 16.3 1936000 2.2639
2.404 16.37 1944000 2.2707
2.3959 16.44 1952000 2.2590
2.3959 16.51 1960000 2.2653
2.3966 16.57 1968000 2.2748
2.3966 16.64 1976000 2.2640
2.3972 16.71 1984000 2.2764
2.3972 16.77 1992000 2.2725
2.398 16.84 2000000 2.2563
2.398 16.91 2008000 2.2614
2.3948 16.98 2016000 2.2725
2.3948 17.04 2024000 2.2718
2.3894 17.11 2032000 2.2684
2.3894 17.18 2040000 2.2638
2.3958 17.25 2048000 2.2723
2.3958 17.31 2056000 2.2640
2.3974 17.38 2064000 2.2530
2.3974 17.45 2072000 2.2635
2.3955 17.52 2080000 2.2654
2.3955 17.58 2088000 2.2647
2.4052 17.65 2096000 2.2608
2.4052 17.72 2104000 2.2637
2.3956 17.79 2112000 2.2660
2.3956 17.85 2120000 2.2645
2.3906 17.92 2128000 2.2618
2.3906 17.99 2136000 2.2579
2.3958 18.05 2144000 2.2709
2.3958 18.12 2152000 2.2715
2.3904 18.19 2160000 2.2602
2.3904 18.26 2168000 2.2671
2.4007 18.32 2176000 2.2658
2.4007 18.39 2184000 2.2650
2.3948 18.46 2192000 2.2659
2.3948 18.53 2200000 2.2599
2.3948 18.59 2208000 2.2651
2.3948 18.66 2216000 2.2632
2.3973 18.73 2224000 2.2714
2.3973 18.8 2232000 2.2654
2.3975 18.86 2240000 2.2557
2.3975 18.93 2248000 2.2611
2.3971 19.0 2256000 2.2715
2.3971 19.07 2264000 2.2626
2.3929 19.13 2272000 2.2604
2.3929 19.2 2280000 2.2772
2.3971 19.27 2288000 2.2680
2.3971 19.33 2296000 2.2633
2.3934 19.4 2304000 2.2566
2.3934 19.47 2312000 2.2527
2.3997 19.54 2320000 2.2630
2.3997 19.6 2328000 2.2605
2.3918 19.67 2336000 2.2585
2.3918 19.74 2344000 2.2656
2.3986 19.81 2352000 2.2587
2.3986 19.87 2360000 2.2652
2.4006 19.94 2368000 2.2616
2.4006 20.01 2376000 2.2572
2.3963 20.08 2384000 2.2667
2.3963 20.14 2392000 2.2603
2.4022 20.21 2400000 2.2687

Framework versions

  • Transformers 4.35.0.dev0
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.5
  • Tokenizers 0.14.0
Downloads last month
3
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for DouglasPontes/2020-Q3-75p-filtered-random

Finetuned
(34)
this model