|
--- |
|
language: |
|
- en |
|
library_name: transformers |
|
pipeline_tag: text-generation |
|
license: cc-by-nc-sa-4.0 |
|
--- |
|
**The license is `cc-by-nc-sa-4.0`.** |
|
|
|
# **🐻❄️SOLARC-MOE-10.7Bx6🐻❄️** |
|
![img](https://drive.google.com/uc?export=view&id=1_Qa2TfLMw3WeJ23dHkrP1Xln_RNt1jqG) |
|
|
|
|
|
## Model Details |
|
|
|
**Model Developers** Seungyoo Lee(DopeorNope) |
|
|
|
I am in charge of Large Language Models (LLMs) at Markr AI team in South Korea. |
|
|
|
**Input** Models input text only. |
|
|
|
**Output** Models generate text only. |
|
|
|
**Model Architecture** |
|
SOLARC-MOE-10.7Bx6 is an auto-regressive language model based on the SOLAR architecture. |
|
|
|
--- |
|
|
|
## **Base Model** |
|
|
|
[kyujinpy/Sakura-SOLAR-Instruct](https://huggingface.co./kyujinpy/Sakura-SOLAR-Instruct) |
|
|
|
[Weyaxi/SauerkrautLM-UNA-SOLAR-Instruct](https://huggingface.co./Weyaxi/SauerkrautLM-UNA-SOLAR-Instruct) |
|
|
|
[VAGOsolutions/SauerkrautLM-SOLAR-Instruct](https://huggingface.co./VAGOsolutions/SauerkrautLM-SOLAR-Instruct) |
|
|
|
[fblgit/UNA-SOLAR-10.7B-Instruct-v1.0](https://huggingface.co./fblgit/UNA-SOLAR-10.7B-Instruct-v1.0) |
|
|
|
[jeonsworld/CarbonVillain-en-10.7B-v1](https://huggingface.co./jeonsworld/CarbonVillain-en-10.7B-v1) |
|
|
|
|
|
## **Implemented Method** |
|
|
|
I have built a model using the Mixture of Experts (MOE) approach, utilizing each of these models as the base. |
|
|
|
I wanted to test if it was possible to compile with a non-power of 2, like with 6 |
|
|
|
--- |
|
|
|
# Implementation Code |
|
|
|
|
|
## Load model |
|
```python |
|
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import torch |
|
|
|
repo = "DopeorNope/SOLARC-MOE-10.7Bx6" |
|
OpenOrca = AutoModelForCausalLM.from_pretrained( |
|
repo, |
|
return_dict=True, |
|
torch_dtype=torch.float32, |
|
device_map='auto' |
|
) |
|
OpenOrca_tokenizer = AutoTokenizer.from_pretrained(repo) |
|
``` |
|
|
|
|
|
--- |