Whisper tflite models for use in Whisper app on F-Droid

"transcribe-translate" models provide signatures for "serving_transcribe" and "serving_translate" to force the model to perform a certain action

@tf.function(
    input_signature=[
        tf.TensorSpec((1, 80, 3000), tf.float32, name="input_features"),
    ],
)
def transcribe(self, input_features):
    outputs = self.model.generate(
        input_features,
        max_new_tokens=450,  # change as needed
        return_dict_in_generate=True,
        forced_decoder_ids=[[2, 50359], [3, 50363]],  # forced to transcribe any language with no timestamps
    )
    return {"sequences": outputs["sequences"]}

@tf.function(
    input_signature=[
        tf.TensorSpec((1, 80, 3000), tf.float32, name="input_features"),
    ],
)
def translate(self, input_features):
    outputs = self.model.generate(
        input_features,
        max_new_tokens=450,  # change as needed
        return_dict_in_generate=True,
        forced_decoder_ids=[[2, 50358], [3, 50363]],  # forced to translate any language with no timestamps
    )
    return {"sequences": outputs["sequences"]}
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Examples
Unable to determine this model's library. Check the docs .