You need to agree to share your contact information to access this model

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this model content.

bertweet-base-sentiment-tuned

This model is a fine-tuned version of vinai/bertweet-base on the EPFL CS-433 Text Classification dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2120
  • Accuracy: 0.9126
  • F1: 0.9126
  • Precision: 0.9127
  • Recall: 0.9126

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 2.0

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.5687 0.0400 707 0.3330 0.8668 0.8668 0.8672 0.8668
0.3066 0.0801 1414 0.2736 0.8852 0.8852 0.8855 0.8852
0.2733 0.1201 2121 0.2515 0.895 0.8950 0.8950 0.895
0.26 0.1601 2828 0.2419 0.8993 0.8993 0.8994 0.8993
0.254 0.2002 3535 0.2340 0.9035 0.9035 0.9035 0.9035
0.243 0.2402 4242 0.2333 0.9023 0.9023 0.9024 0.9023
0.2412 0.2802 4949 0.2306 0.901 0.9010 0.9015 0.901
0.2405 0.3203 5656 0.2281 0.9048 0.9048 0.9049 0.9048
0.233 0.3603 6363 0.2253 0.9071 0.9071 0.9073 0.9071
0.2357 0.4003 7070 0.2250 0.9073 0.9073 0.9079 0.9073
0.2321 0.4403 7777 0.2245 0.9051 0.9051 0.9051 0.9051
0.2335 0.4804 8484 0.2325 0.9029 0.9028 0.9045 0.9029
0.2341 0.5204 9191 0.2229 0.9082 0.9082 0.9083 0.9082
0.2295 0.5604 9898 0.2187 0.9087 0.9087 0.9088 0.9087
0.2281 0.6005 10605 0.2228 0.9055 0.9055 0.9058 0.9055
0.2293 0.6405 11312 0.2188 0.9087 0.9087 0.9087 0.9087
0.2286 0.6805 12019 0.2188 0.9087 0.9087 0.9087 0.9087
0.2262 0.7206 12726 0.2183 0.9105 0.9105 0.9105 0.9105
0.2255 0.7606 13433 0.2176 0.9082 0.9082 0.9084 0.9082
0.2204 0.8006 14140 0.2189 0.911 0.9110 0.9111 0.911
0.2256 0.8407 14847 0.2176 0.9083 0.9083 0.9086 0.9083
0.222 0.8807 15554 0.2145 0.9116 0.9116 0.9116 0.9116
0.2198 0.9207 16261 0.2155 0.9113 0.9113 0.9116 0.9113
0.2223 0.9608 16968 0.2177 0.9075 0.9075 0.9079 0.9075
0.2223 1.0008 17675 0.2147 0.9112 0.9112 0.9112 0.9112
0.2064 1.0408 18382 0.2157 0.9105 0.9105 0.9105 0.9105
0.2053 1.0809 19089 0.2153 0.9102 0.9102 0.9102 0.9102
0.2071 1.1209 19796 0.2133 0.9113 0.9113 0.9113 0.9113
0.2035 1.1609 20503 0.2165 0.913 0.9130 0.9130 0.913
0.2033 1.2010 21210 0.2153 0.9119 0.9119 0.9119 0.9119
0.2071 1.2410 21917 0.2144 0.9124 0.9124 0.9124 0.9124
0.2025 1.2810 22624 0.2132 0.913 0.9130 0.9131 0.913
0.2056 1.3210 23331 0.2158 0.9111 0.9111 0.9113 0.9111
0.2058 1.3611 24038 0.2127 0.9117 0.9117 0.9117 0.9117
0.2026 1.4011 24745 0.2150 0.9124 0.9124 0.9124 0.9124
0.2053 1.4411 25452 0.2155 0.9123 0.9123 0.9125 0.9123
0.2006 1.4812 26159 0.2143 0.9135 0.9135 0.9136 0.9135
0.2054 1.5212 26866 0.2123 0.9142 0.9142 0.9142 0.9142
0.2017 1.5612 27573 0.2154 0.9123 0.9123 0.9127 0.9123
0.2027 1.6013 28280 0.2117 0.9137 0.9137 0.9137 0.9137
0.2029 1.6413 28987 0.2136 0.9132 0.9132 0.9133 0.9132
0.2025 1.6813 29694 0.2136 0.9123 0.9123 0.9124 0.9123
0.2037 1.7214 30401 0.2121 0.9125 0.9125 0.9125 0.9125
0.2015 1.7614 31108 0.2123 0.9131 0.9131 0.9131 0.9131
0.201 1.8014 31815 0.2127 0.9127 0.9127 0.9127 0.9127
0.2017 1.8415 32522 0.2109 0.913 0.9130 0.9130 0.913
0.2003 1.8815 33229 0.2114 0.9132 0.9132 0.9132 0.9132
0.2012 1.9215 33936 0.2123 0.9131 0.9131 0.9132 0.9131
0.199 1.9616 34643 0.2120 0.9126 0.9126 0.9127 0.9126

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
0
Safetensors
Model size
135M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for DoDucAnh/bertweet-base-sentiment-tuned

Finetuned
(240)
this model