metadata
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
- generated_from_trainer
datasets:
- DewiBrynJones/oscar-cy-tts
metrics:
- wer
model-index:
- name: whisper-large-v3-ft-tts-cy
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: DewiBrynJones/oscar-cy-tts default
type: DewiBrynJones/oscar-cy-tts
args: default
metrics:
- name: Wer
type: wer
value: 0.10755268881722042
whisper-large-v3-ft-tts-cy
This model is a fine-tuned version of openai/whisper-large-v3 on the DewiBrynJones/oscar-cy-tts default dataset. It achieves the following results on the evaluation set:
- Loss: 0.1365
- Wer: 0.1076
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.2469 | 0.3232 | 1000 | 0.2313 | 0.1733 |
0.1578 | 0.6464 | 2000 | 0.1785 | 0.1373 |
0.1491 | 0.9696 | 3000 | 0.1531 | 0.1213 |
0.099 | 1.2928 | 4000 | 0.1434 | 0.1129 |
0.0874 | 1.6160 | 5000 | 0.1365 | 0.1076 |
Framework versions
- Transformers 4.44.0
- Pytorch 2.4.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1