SentenceTransformer based on cl-nagoya/sup-simcse-ja-base

This is a sentence-transformers model finetuned from cl-nagoya/sup-simcse-ja-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: cl-nagoya/sup-simcse-ja-base
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("Detomo/cl-nagoya-sup-simcse-ja-for-standard-name-v1_1")
# Run inference
sentences = [
    '科目:ユニット及びその他。名称:4F透析室カウンター。',
    '科目:ユニット及びその他。名称:2F初療1、2カウンター。',
    '科目:ユニット及びその他。名称:9Fスタッフステーション1カウンター。',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Training Details

Training Dataset

Unnamed Dataset

  • Size: 8,788 training samples
  • Columns: sentence and label
  • Approximate statistics based on the first 1000 samples:
    sentence label
    type string int
    details
    • min: 13 tokens
    • mean: 23.19 tokens
    • max: 41 tokens
    • 0: ~0.20%
    • 1: ~0.30%
    • 2: ~0.30%
    • 3: ~0.30%
    • 4: ~0.20%
    • 5: ~0.20%
    • 6: ~0.20%
    • 7: ~0.20%
    • 8: ~0.30%
    • 9: ~0.30%
    • 10: ~0.20%
    • 11: ~0.20%
    • 12: ~0.20%
    • 13: ~0.20%
    • 14: ~0.20%
    • 15: ~0.20%
    • 16: ~0.40%
    • 17: ~0.20%
    • 18: ~0.20%
    • 19: ~0.20%
    • 20: ~0.20%
    • 21: ~0.20%
    • 22: ~0.20%
    • 23: ~0.20%
    • 24: ~0.20%
    • 25: ~0.20%
    • 26: ~0.20%
    • 27: ~0.20%
    • 28: ~0.20%
    • 29: ~0.20%
    • 30: ~0.20%
    • 31: ~0.20%
    • 32: ~0.20%
    • 33: ~0.20%
    • 34: ~0.20%
    • 35: ~0.20%
    • 36: ~0.20%
    • 37: ~0.20%
    • 38: ~0.20%
    • 39: ~0.20%
    • 40: ~0.20%
    • 41: ~0.20%
    • 42: ~0.60%
    • 43: ~0.70%
    • 44: ~0.20%
    • 45: ~0.30%
    • 46: ~0.20%
    • 47: ~0.20%
    • 48: ~0.30%
    • 49: ~0.20%
    • 50: ~0.20%
    • 51: ~0.20%
    • 52: ~0.20%
    • 53: ~0.30%
    • 54: ~0.40%
    • 55: ~0.30%
    • 56: ~0.20%
    • 57: ~0.20%
    • 58: ~0.20%
    • 59: ~0.20%
    • 60: ~0.20%
    • 61: ~0.30%
    • 62: ~0.20%
    • 63: ~0.20%
    • 64: ~0.20%
    • 65: ~0.20%
    • 66: ~0.40%
    • 67: ~0.40%
    • 68: ~0.20%
    • 69: ~0.60%
    • 70: ~0.20%
    • 71: ~0.20%
    • 72: ~0.20%
    • 73: ~0.20%
    • 74: ~0.20%
    • 75: ~0.30%
    • 76: ~0.20%
    • 77: ~0.40%
    • 78: ~0.20%
    • 79: ~0.20%
    • 80: ~0.50%
    • 81: ~0.30%
    • 82: ~0.60%
    • 83: ~0.20%
    • 84: ~0.30%
    • 85: ~0.20%
    • 86: ~0.20%
    • 87: ~0.20%
    • 88: ~0.20%
    • 89: ~1.10%
    • 90: ~1.70%
    • 91: ~2.20%
    • 92: ~0.50%
    • 93: ~0.20%
    • 94: ~0.20%
    • 95: ~1.60%
    • 96: ~0.20%
    • 97: ~0.20%
    • 98: ~0.20%
    • 99: ~0.20%
    • 100: ~0.30%
    • 101: ~1.70%
    • 102: ~0.20%
    • 103: ~0.20%
    • 104: ~0.40%
    • 105: ~0.40%
    • 106: ~0.20%
    • 107: ~0.20%
    • 108: ~0.20%
    • 109: ~1.10%
    • 110: ~0.20%
    • 111: ~0.40%
    • 112: ~0.50%
    • 113: ~0.20%
    • 114: ~0.20%
    • 115: ~0.20%
    • 116: ~0.20%
    • 117: ~0.50%
    • 118: ~0.20%
    • 119: ~0.20%
    • 120: ~0.20%
    • 121: ~0.20%
    • 122: ~0.20%
    • 123: ~0.20%
    • 124: ~0.30%
    • 125: ~0.20%
    • 126: ~0.20%
    • 127: ~0.20%
    • 128: ~0.40%
    • 129: ~0.20%
    • 130: ~0.20%
    • 131: ~0.20%
    • 132: ~0.20%
    • 133: ~0.20%
    • 134: ~0.20%
    • 135: ~0.20%
    • 136: ~0.20%
    • 137: ~0.20%
    • 138: ~0.30%
    • 139: ~0.20%
    • 140: ~0.30%
    • 141: ~0.30%
    • 142: ~0.20%
    • 143: ~0.20%
    • 144: ~0.20%
    • 145: ~0.20%
    • 146: ~0.20%
    • 147: ~0.20%
    • 148: ~0.20%
    • 149: ~0.20%
    • 150: ~0.20%
    • 151: ~0.20%
    • 152: ~0.20%
    • 153: ~0.20%
    • 154: ~0.20%
    • 155: ~0.20%
    • 156: ~0.60%
    • 157: ~0.20%
    • 158: ~1.50%
    • 159: ~0.20%
    • 160: ~0.20%
    • 161: ~0.20%
    • 162: ~0.20%
    • 163: ~0.50%
    • 164: ~0.20%
    • 165: ~0.20%
    • 166: ~0.20%
    • 167: ~0.20%
    • 168: ~0.20%
    • 169: ~0.30%
    • 170: ~0.30%
    • 171: ~0.20%
    • 172: ~0.20%
    • 173: ~1.30%
    • 174: ~0.20%
    • 175: ~0.20%
    • 176: ~0.20%
    • 177: ~0.20%
    • 178: ~0.60%
    • 179: ~0.20%
    • 180: ~0.20%
    • 181: ~0.20%
    • 182: ~0.20%
    • 183: ~0.20%
    • 184: ~0.20%
    • 185: ~0.30%
    • 186: ~0.20%
    • 187: ~0.20%
    • 188: ~0.30%
    • 189: ~0.20%
    • 190: ~0.90%
    • 191: ~0.30%
    • 192: ~0.30%
    • 193: ~0.20%
    • 194: ~0.30%
    • 195: ~0.20%
    • 196: ~0.80%
    • 197: ~0.20%
    • 198: ~0.20%
    • 199: ~0.30%
    • 200: ~0.20%
    • 201: ~0.20%
    • 202: ~0.20%
    • 203: ~0.20%
    • 204: ~0.20%
    • 205: ~1.20%
    • 206: ~0.40%
    • 207: ~0.20%
    • 208: ~0.20%
    • 209: ~0.20%
    • 210: ~0.20%
    • 211: ~0.30%
    • 212: ~0.20%
    • 213: ~0.80%
    • 214: ~0.30%
    • 215: ~0.20%
    • 216: ~1.10%
    • 217: ~0.30%
    • 218: ~0.20%
    • 219: ~0.20%
    • 220: ~0.20%
    • 221: ~0.20%
    • 222: ~0.20%
    • 223: ~0.20%
    • 224: ~0.20%
    • 225: ~0.30%
    • 226: ~0.20%
    • 227: ~0.90%
    • 228: ~4.70%
    • 229: ~0.20%
    • 230: ~0.20%
    • 231: ~0.20%
    • 232: ~0.70%
    • 233: ~0.20%
    • 234: ~0.80%
    • 235: ~0.20%
    • 236: ~0.40%
    • 237: ~0.30%
    • 238: ~0.40%
    • 239: ~0.20%
    • 240: ~0.30%
    • 241: ~0.50%
    • 242: ~0.30%
    • 243: ~0.20%
    • 244: ~0.20%
    • 245: ~0.30%
    • 246: ~0.30%
    • 247: ~0.30%
    • 248: ~0.60%
    • 249: ~0.20%
    • 250: ~0.20%
    • 251: ~0.20%
    • 252: ~0.30%
    • 253: ~0.30%
    • 254: ~1.90%
    • 255: ~0.20%
    • 256: ~0.20%
    • 257: ~0.20%
    • 258: ~0.20%
    • 259: ~0.20%
    • 260: ~0.50%
    • 261: ~0.20%
    • 262: ~0.30%
    • 263: ~0.20%
    • 264: ~0.20%
    • 265: ~1.00%
    • 266: ~0.20%
    • 267: ~0.20%
    • 268: ~0.20%
    • 269: ~0.40%
    • 270: ~0.20%
    • 271: ~0.20%
    • 272: ~0.20%
    • 273: ~0.20%
    • 274: ~0.20%
    • 275: ~0.20%
    • 276: ~0.20%
    • 277: ~3.70%
    • 278: ~0.20%
    • 279: ~0.40%
    • 280: ~0.20%
    • 281: ~0.20%
    • 282: ~0.90%
    • 283: ~0.40%
    • 284: ~0.20%
    • 285: ~2.30%
    • 286: ~0.30%
    • 287: ~0.20%
    • 288: ~0.30%
    • 289: ~0.60%
  • Samples:
    sentence label
    科目:コンクリート。名称:免震基礎天端グラウト注入。 0
    科目:コンクリート。名称:免震基礎天端グラウト注入。 0
    科目:コンクリート。名称:コンクリートポンプ圧送。 1
  • Loss: BatchAllTripletLoss

Training Hyperparameters

Non-Default Hyperparameters

  • per_device_train_batch_size: 256
  • per_device_eval_batch_size: 256
  • learning_rate: 1e-05
  • weight_decay: 0.01
  • num_train_epochs: 250
  • warmup_ratio: 0.1
  • fp16: True
  • batch_sampler: group_by_label

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: no
  • prediction_loss_only: True
  • per_device_train_batch_size: 256
  • per_device_eval_batch_size: 256
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 1e-05
  • weight_decay: 0.01
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 250
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: group_by_label
  • multi_dataset_batch_sampler: proportional

Training Logs

Click to expand
Epoch Step Training Loss
0.5714 20 0.787
1.2 40 0.7827
1.7714 60 0.7361
2.4 80 0.6798
3.0286 100 0.6569
3.6 120 0.6669
4.2286 140 0.6163
4.8 160 0.6277
5.4286 180 0.6449
6.0571 200 0.6135
6.6286 220 0.6445
7.2571 240 0.6572
7.8286 260 0.6268
8.4571 280 0.6034
9.0857 300 0.5598
9.6571 320 0.5801
10.2857 340 0.5471
10.8571 360 0.6579
11.4857 380 0.6059
12.1143 400 0.5715
12.6857 420 0.5986
13.3143 440 0.5601
13.8857 460 0.5547
14.5143 480 0.5642
15.1429 500 0.697
15.7143 520 0.5688
16.3429 540 0.5736
16.9143 560 0.5088
17.5429 580 0.5677
18.1714 600 0.6028
18.7429 620 0.5674
19.3714 640 0.5665
19.9429 660 0.6289
20.5714 680 0.5456
21.2 700 0.4944
21.7714 720 0.5712
22.4 740 0.6106
23.0286 760 0.5209
23.6 780 0.5236
24.2286 800 0.6091
24.8 820 0.6678
25.4286 840 0.4693
26.0571 860 0.4582
26.6286 880 0.5627
27.2571 900 0.5525
27.8286 920 0.503
28.4571 940 0.4801
29.0857 960 0.5039
29.6571 980 0.5049
30.2857 1000 0.595
30.8571 1020 0.4733
31.4857 1040 0.5804
32.1143 1060 0.4101
32.6857 1080 0.4311
33.3143 1100 0.4746
33.8857 1120 0.4964
34.5143 1140 0.4436
35.1429 1160 0.6351
35.7143 1180 0.5267
36.3429 1200 0.4685
36.9143 1220 0.4201
37.5429 1240 0.4256
38.1714 1260 0.5543
38.7429 1280 0.5176
39.3714 1300 0.4328
39.9429 1320 0.4746
40.5714 1340 0.4768
41.2 1360 0.4663
41.7714 1380 0.4729
42.4 1400 0.4141
43.0286 1420 0.3195
43.6 1440 0.3789
44.2286 1460 0.4032
44.8 1480 0.443
45.4286 1500 0.4116
46.0571 1520 0.4951
46.6286 1540 0.3845
47.2571 1560 0.3461
47.8286 1580 0.4754
48.4571 1600 0.5583
49.0857 1620 0.4282
49.6571 1640 0.436
50.2857 1660 0.4097
50.8571 1680 0.4642
51.4857 1700 0.3243
52.1143 1720 0.4395
52.6857 1740 0.3672
53.3143 1760 0.4781
53.8857 1780 0.5362
54.5143 1800 0.4401
55.1429 1820 0.4313
55.7143 1840 0.2751
56.3429 1860 0.331
56.9143 1880 0.4325
57.5429 1900 0.2995
58.1714 1920 0.4159
58.7429 1940 0.5603
59.3714 1960 0.4575
59.9429 1980 0.4677
60.5714 2000 0.4653
61.2 2020 0.3098
61.7714 2040 0.3188
62.4 2060 0.3769
63.0286 2080 0.2902
63.6 2100 0.4064
64.2286 2120 0.3663
64.8 2140 0.3184
65.4286 2160 0.4874
66.0571 2180 0.4094
66.6286 2200 0.4261
67.2571 2220 0.3808
67.8286 2240 0.2991
68.4571 2260 0.3242
69.0857 2280 0.2582
69.6571 2300 0.3806
70.2857 2320 0.3573
70.8571 2340 0.3183
71.4857 2360 0.4043
72.1143 2380 0.4266
72.6857 2400 0.5612
73.3143 2420 0.3476
73.8857 2440 0.3018
74.5143 2460 0.2952
75.1429 2480 0.2633
75.7143 2500 0.3564
76.3429 2520 0.2283
76.9143 2540 0.3615
77.5429 2560 0.2174
78.1714 2580 0.3049
78.7429 2600 0.2838
79.3714 2620 0.3191
79.9429 2640 0.2529
80.5714 2660 0.3192
81.2 2680 0.5119
81.7714 2700 0.2459
82.4 2720 0.4136
83.0286 2740 0.3266
83.6 2760 0.2863
84.2286 2780 0.3563
84.8 2800 0.2605
85.4286 2820 0.254
86.0571 2840 0.2252
86.6286 2860 0.3191
87.2571 2880 0.3074
87.8286 2900 0.274
88.4571 2920 0.3864
89.0857 2940 0.3206
89.6571 2960 0.2752
90.2857 2980 0.2033
90.8571 3000 0.3979
91.4857 3020 0.4327
92.1143 3040 0.1999
92.6857 3060 0.3939
93.3143 3080 0.2733
93.8857 3100 0.4334
94.5143 3120 0.3726
95.1429 3140 0.2567
95.7143 3160 0.258
96.3429 3180 0.1805
96.9143 3200 0.3244
97.5429 3220 0.2038
98.1714 3240 0.2689
98.7429 3260 0.433
99.3714 3280 0.1587
99.9429 3300 0.3088
100.5714 3320 0.3049
101.2 3340 0.335
101.7714 3360 0.2688
102.4 3380 0.359
103.0286 3400 0.2512
103.6 3420 0.2818
104.2286 3440 0.3606
104.8 3460 0.3254
105.4286 3480 0.2487
106.0571 3500 0.2184
106.6286 3520 0.2897
107.2571 3540 0.2849
107.8286 3560 0.362
108.4571 3580 0.2418
109.0857 3600 0.1498
109.6571 3620 0.2566
110.2857 3640 0.1181
110.8571 3660 0.3675
111.4857 3680 0.2722
112.1143 3700 0.3779
112.6857 3720 0.3882
113.3143 3740 0.1941
113.8857 3760 0.2281
114.5143 3780 0.2079
115.1429 3800 0.3443
115.7143 3820 0.2763
116.3429 3840 0.2331
116.9143 3860 0.2093
117.5429 3880 0.2439
118.1714 3900 0.1312
118.7429 3920 0.1098
119.3714 3940 0.2295
119.9429 3960 0.2501
120.5714 3980 0.3522
121.2 4000 0.3293
121.7714 4020 0.1698
122.4 4040 0.3992
123.0286 4060 0.1931
123.6 4080 0.1755
124.2286 4100 0.3408
124.8 4120 0.2337
125.4286 4140 0.2121
126.0571 4160 0.1628
126.6286 4180 0.2455
127.2571 4200 0.3342
127.8286 4220 0.1725
128.4571 4240 0.3714
129.0857 4260 0.2775
129.6571 4280 0.1764
130.2857 4300 0.1863
130.8571 4320 0.276
131.4857 4340 0.2006
132.1143 4360 0.2099
132.6857 4380 0.2397
133.3143 4400 0.223
133.8857 4420 0.1321
134.5143 4440 0.2499
135.1429 4460 0.2107
135.7143 4480 0.2374
136.3429 4500 0.2589
136.9143 4520 0.2382
137.5429 4540 0.1058
138.1714 4560 0.2519
138.7429 4580 0.23
139.3714 4600 0.2031
139.9429 4620 0.2424
140.5714 4640 0.1312
141.2 4660 0.1787
141.7714 4680 0.2445
142.4 4700 0.1948
143.0286 4720 0.2601
143.6 4740 0.1906
144.2286 4760 0.35
144.8 4780 0.1674
145.4286 4800 0.2339
146.0571 4820 0.2151
146.6286 4840 0.1986
147.2571 4860 0.1608
147.8286 4880 0.2729
148.4571 4900 0.1555
149.0857 4920 0.1536
149.6571 4940 0.1245
150.2857 4960 0.2635
150.8571 4980 0.1628
151.4857 5000 0.1869
152.1143 5020 0.2142
152.6857 5040 0.1867
153.3143 5060 0.2361
153.8857 5080 0.1811
154.5143 5100 0.4071
155.1429 5120 0.2499
155.7143 5140 0.2398
156.3429 5160 0.1486
156.9143 5180 0.1683
157.5429 5200 0.1434
158.1714 5220 0.1731
158.7429 5240 0.1674
159.3714 5260 0.1085
159.9429 5280 0.2573
160.5714 5300 0.1937
161.2 5320 0.0806
161.7714 5340 0.1411
162.4 5360 0.1603
163.0286 5380 0.1787
163.6 5400 0.2099
164.2286 5420 0.2676
164.8 5440 0.2658
165.4286 5460 0.2632
166.0571 5480 0.1839
166.6286 5500 0.2524
167.2571 5520 0.2018
167.8286 5540 0.2955
168.4571 5560 0.209
169.0857 5580 0.1999
169.6571 5600 0.2836
170.2857 5620 0.1559
170.8571 5640 0.2746
171.4857 5660 0.1939
172.1143 5680 0.1561
172.6857 5700 0.0935
173.3143 5720 0.1927
173.8857 5740 0.3022
174.5143 5760 0.2068
175.1429 5780 0.1384
175.7143 5800 0.086
176.3429 5820 0.1181
176.9143 5840 0.3145
177.5429 5860 0.0974
178.1714 5880 0.1891
178.7429 5900 0.1788
179.3714 5920 0.1954
179.9429 5940 0.1342
180.5714 5960 0.0936
181.2 5980 0.3109
181.7714 6000 0.1879
182.4 6020 0.0798
183.0286 6040 0.097
183.6 6060 0.0835
184.2286 6080 0.0931
184.8 6100 0.1377
185.4286 6120 0.1239
186.0571 6140 0.0307
186.6286 6160 0.1962
187.2571 6180 0.242
187.8286 6200 0.0886
188.4571 6220 0.2103
189.0857 6240 0.0746
189.6571 6260 0.1191
190.2857 6280 0.2356
190.8571 6300 0.2015
191.4857 6320 0.1728
192.1143 6340 0.1624
192.6857 6360 0.2528
193.3143 6380 0.0759
193.8857 6400 0.2138
194.5143 6420 0.1544
195.1429 6440 0.2444
195.7143 6460 0.1896
196.3429 6480 0.1646
196.9143 6500 0.1305
197.5429 6520 0.1379
198.1714 6540 0.1845
198.7429 6560 0.1997
199.3714 6580 0.2049
199.9429 6600 0.2891
200.5714 6620 0.1718
201.2 6640 0.1449
201.7714 6660 0.2096
202.4 6680 0.1056
203.0286 6700 0.0862
203.6 6720 0.0914
204.2286 6740 0.2433
204.8 6760 0.146
205.4286 6780 0.2099
206.0571 6800 0.0877
206.6286 6820 0.1194
207.2571 6840 0.069
207.8286 6860 0.0742
208.4571 6880 0.2773
209.0857 6900 0.1762
209.6571 6920 0.1573
210.2857 6940 0.0922
210.8571 6960 0.1366
211.4857 6980 0.0746
212.1143 7000 0.2004
212.6857 7020 0.0922
213.3143 7040 0.0662
213.8857 7060 0.1828
214.5143 7080 0.1202
215.1429 7100 0.1388
215.7143 7120 0.0638
216.3429 7140 0.2259
216.9143 7160 0.1219
217.5429 7180 0.1599
218.1714 7200 0.2424
218.7429 7220 0.149
219.3714 7240 0.272
219.9429 7260 0.1051
220.5714 7280 0.2117
221.2 7300 0.1466
221.7714 7320 0.1155
222.4 7340 0.2247
223.0286 7360 0.096
223.6 7380 0.0566
224.2286 7400 0.2404
224.8 7420 0.1684
225.4286 7440 0.0927
226.0571 7460 0.1746
226.6286 7480 0.13
227.2571 7500 0.1027
227.8286 7520 0.1359
228.4571 7540 0.0937
229.0857 7560 0.1378
229.6571 7580 0.0458
230.2857 7600 0.0766
230.8571 7620 0.0896
231.4857 7640 0.1541
232.1143 7660 0.1464
232.6857 7680 0.1427
233.3143 7700 0.2471
233.8857 7720 0.1636
234.5143 7740 0.1601
235.1429 7760 0.1583
235.7143 7780 0.1473
236.3429 7800 0.1211
236.9143 7820 0.1582
237.5429 7840 0.1083
238.1714 7860 0.2014
238.7429 7880 0.0981
239.3714 7900 0.2449
239.9429 7920 0.1142
240.5714 7940 0.1177
241.2 7960 0.1241
241.7714 7980 0.2778
242.4 8000 0.1066
243.0286 8020 0.0867
243.6 8040 0.156
244.2286 8060 0.1413
244.8 8080 0.0598
245.4286 8100 0.1206
246.0571 8120 0.1883
246.6286 8140 0.1245
247.2571 8160 0.0949
247.8286 8180 0.1096
248.4571 8200 0.1567
249.0857 8220 0.065
249.6571 8240 0.1075

Framework Versions

  • Python: 3.11.11
  • Sentence Transformers: 3.3.1
  • Transformers: 4.48.3
  • PyTorch: 2.5.1+cu124
  • Accelerate: 1.3.0
  • Datasets: 3.3.2
  • Tokenizers: 0.21.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

BatchAllTripletLoss

@misc{hermans2017defense,
    title={In Defense of the Triplet Loss for Person Re-Identification},
    author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
    year={2017},
    eprint={1703.07737},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}
Downloads last month
20
Safetensors
Model size
111M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for Detomo/cl-nagoya-sup-simcse-ja-for-standard-name-v1_1

Finetuned
(2)
this model