Edit model card

Den4ikAI/ruT5-small-interpreter

Модель для восстановления фразы с помощью контекста диалога (анафора, эллипсисы, гэппинг), проверки орфографии и нормализации текста диалоговых реплик.

Больше о задаче тут.

Пример использования

import torch
from transformers import T5ForConditionalGeneration, T5Tokenizer
model_name = 'Den4ikAI/ruT5-small-interpreter'
tokenizer = T5Tokenizer.from_pretrained(model_name)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = T5ForConditionalGeneration.from_pretrained(model_name)
model.eval()
t5_input = '''- Ты собак любишь?
- Не люблю я их  #'''
input_ids = tokenizer(t5_input, return_tensors='pt').input_ids
out_ids = model.generate(input_ids=input_ids, max_length=100, eos_token_id=tokenizer.eos_token_id, early_stopping=True)
t5_output = tokenizer.decode(out_ids[0][1:])
print(t5_output)

Citation

@MISC{Den4ikAI/ruT5-small-interpreter,
    author  = {Denis Petrov, Ilya Koziev},
    title   = {Russian conversations interpreter and normalizer},
    url     = {https://huggingface.co./Den4ikAI/ruT5-small-interpreter},
    year    = 2023
}
Downloads last month
20
Safetensors
Model size
64.6M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train Den4ikAI/ruT5-small-interpreter