File size: 10,345 Bytes
d311649
 
bd19416
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d25547c
 
bd19416
 
 
 
 
 
 
 
 
 
 
 
 
 
d25547c
 
bd19416
 
 
 
 
 
 
 
 
 
 
 
 
 
d25547c
 
bd19416
 
 
 
 
 
 
 
 
 
 
 
 
 
d25547c
 
bd19416
 
 
 
 
 
 
 
 
 
 
 
 
 
d25547c
 
bd19416
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d25547c
 
bd19416
d25547c
 
 
 
 
d311649
 
 
 
 
07e22ed
d311649
 
d25547c
 
 
 
 
 
7de2179
 
d25547c
7de2179
 
d25547c
 
 
 
 
 
d311649
 
 
 
 
d25547c
 
d311649
d25547c
 
 
 
 
 
 
 
d311649
 
 
 
 
d25547c
 
 
d311649
 
 
 
 
 
 
 
d25547c
d311649
 
 
d25547c
d311649
 
 
 
 
d25547c
d311649
 
 
 
 
d25547c
 
d311649
 
d25547c
d311649
 
d25547c
 
 
 
 
d311649
 
d25547c
d311649
 
 
 
 
 
 
 
d25547c
 
 
d311649
 
 
 
 
 
 
 
 
 
 
 
 
 
d25547c
d311649
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d25547c
 
d311649
 
d25547c
 
 
 
d311649
 
 
 
 
d25547c
 
 
 
 
 
d311649
 
 
d25547c
d311649
 
 
d25547c
d311649
 
 
d25547c
d311649
35aa277
d311649
9341921
 
 
e59ac2d
 
 
 
 
 
 
 
 
 
 
 
d25547c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
---
library_name: transformers
model-index:
- name: Explore_Llama-3.2-1B-Inst_v1.1
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: HuggingFaceH4/ifeval
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 48.13
      name: strict accuracy
    source:
      url: >-
        https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=DeepAutoAI/Explore_Llama-3.2-1B-Inst_v1.1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: BBH
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 5.19
      name: normalized accuracy
    source:
      url: >-
        https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=DeepAutoAI/Explore_Llama-3.2-1B-Inst_v1.1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: hendrycks/competition_math
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 1.36
      name: exact match
    source:
      url: >-
        https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=DeepAutoAI/Explore_Llama-3.2-1B-Inst_v1.1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 2.35
      name: acc_norm
    source:
      url: >-
        https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=DeepAutoAI/Explore_Llama-3.2-1B-Inst_v1.1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 4.05
      name: acc_norm
    source:
      url: >-
        https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=DeepAutoAI/Explore_Llama-3.2-1B-Inst_v1.1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 3.05
      name: accuracy
    source:
      url: >-
        https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=DeepAutoAI/Explore_Llama-3.2-1B-Inst_v1.1
      name: Open LLM Leaderboard
license: apache-2.0
language:
- en
base_model:
- meta-llama/Llama-3.2-1B-Instruct
---

# Model Card for Model ID

<!-- Provide a quick summary of what the model is/does. -->
![Model Exploration](./d2nwg2.webp)



## Overview


**DeepAutoAI/Explore_Llama-3.2-1B-Inst** is developed by **deepAuto.ai** by learning the distribution of llama-3.2-1B-instruct.
Our approach leverages the base model’s pretrained weights and optimizes them for the **Winogrande** and **ARC-Challenge** datasets by 
training a latent diffusion model on the pretrained weights. specifically , this model is based on learning the distrinution of the top 2 layer of layer in feed forward
or attention layers based on spectrum based optimum layer selection. 


We directly transfer the weights of the best model on both winogrande and arc-challenge for **DeepAutoAI/Explore_Llama-3.1-1B-Inst**.

This approach has led to improved performance on previously unseen leaderboard tasks, all without any additional task-specific training.

The work is currently in progress


## Model Details


<!-- Provide a longer summary of what this model is. -->

We trained a diffusion model to learn the distribution of subset of llama to enable generation weights that improve the performance.
We generate task specific weights on winogrande and arc_challenge then transfer the best model for leaderboard benchmarking.

- **Developed by:** DeepAuto.ai
- **Funded by [optional]:** DeepAuto.ai
- **Shared by [optional]:** DeepAuto.ai
- **Model type:** llama-3.2-1B
- **Language(s) (NLP):** English
- **License:** Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in
- compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
- **Finetuned from model [optional]:** No fine-tuning

### Model Sources [optional]

<!-- Provide the basic links for the model. -->

- **Repository:** Under construction
- **Paper [optional]:** To be announce


## Uses

<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->


<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->

The direct use case of our work is o improve existing model performance as well as generating task specific weights with no training.


<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
Performance improvement of existing large models with limited compute

### Out-of-Scope Use

<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->

No fine-tuning or architecture generalization

## Bias, Risks, and Limitations

<!-- This section is meant to convey both technical and sociotechnical limitations. -->

Using a generative model to produce weights can potentially lead to unintended or undesirable outputs. However, the generated content 
will still fall within the range of what the base model is inherently capable of producing.

## How to Get Started with the Model
The work is under progress

## Training Details
We employed a latent diffusion process on pretrained model weights, unlocking the ability to generate diverse, previously unseen neural networks. 
Remarkably, even within the constraints of one-shot learning, our approach consistently produces a wide range of weight variations, each offering 
distinct performance characteristics. These generated weights not only open opportunities for weight averaging and model merging but also have the
potential to significantly enhance model performance. Moreover, they enable the creation of task-specific weights, tailored to optimize performance 
for specialized applications

### Training Data
The training data used to produced the current model is the base pretrained weights

<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->


### Training Procedure

<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->

- We selected a set of layers and combined their pretrained weights, then trained a Variational Autoencoder (VAE) to encode these weights into the layer dimension.
- We conditionally trained a diffusion model on this set of weights, allowing individual sampling of layer-specific weights.
- All selected layers were encoded into a 1024-dimensional space. This model exclusively contained the sampled weights for layer normalization."


<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->


## Evaluation

<!-- This section describes the evaluation protocols and provides the results. -->

### Testing Data, Factors & Metrics


<!-- This should link to a Dataset Card if possible. -->

We test our method on Winogrande and arc_challenge, and hellaswag

#### Factors

<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->

[More Information Needed]

#### Metrics

<!-- These are the evaluation metrics being used, ideally with a description of why. -->

[More Information Needed]

### Results

[More Information Needed]

#### Summary



## Model Examination [optional]

<!-- Relevant interpretability work for the model goes here -->

[More Information Needed]

## Environmental Impact

<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->



Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).

- **Hardware Type:** Nvidia-A100-40Gb
- **Hours used:**  VAE is trained for 4 hour and diffusion process 4 hours
- **Compute Region:** South Korea
- **Carbon Emitted:** 0.96kg

## Technical Specifications [optional]

### Model Architecture and Objective

We used Latent diffusion for weights generation, and llama3-2-1B as target architectures.

The primary objective of this weight generation process was to demonstrate that by learning only the distribution
of few layers weights (normlaization layers in this case) in an 1-billion-parameter model, it is possible to significantly enhance the
 model's capabilities. Notably, this is achieved using a fraction of the computational resources and without the
 need for fine-tuning, showcasing the efficiency and potential of this approach.

### Compute Infrastructure

Nvidia-A100 cluster

#### Hardware

A single Nvidia-A100

#### Software

Model is tested using lm-harness tool version 0.4.3
## Model Card Contact
[email protected]

## References
<a href="https://arxiv.org/abs/2402.18153" target="_blank">Diffusion-Based Neural Network Weights Generation</a>


# [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/details_DeepAutoAI__Explore_Llama-3.2-1B-Inst_v1.1)

|      Metric       |Value|
|-------------------|----:|
|Avg.               |14.12|
|IFEval (0-Shot)    |58.44|
|BBH (3-Shot)       | 8.82|
|MATH Lvl 5 (4-Shot)| 6.04|
|GPQA (0-shot)      | 1.68|
|MuSR (0-shot)      | 0.66|
|MMLU-PRO (5-shot)  | 9.09|